Super Beta Combination Labeling of Graphs

¹R.Subramoniam, ²T. Tharma Raj

^{1, 2} Assistant Professor,

^{1, 2}Department of Mathematics,

Lekshmipuram College of Arts and Science, Lekshmipuram, Neyyoor - 629802. ¹Email:trajtr@gmail.com, ² Email:subs19@gmail.com.

ABSTRACT

Let G(V, E) be a graph with p vertices and q edges. A graph G(p,q) is said to be a Super Beta combination graph if there exist a bijection $f:V(G) \to \{1,2,3,...,p\}$ such that the induced function $f^s: E(G) \to N$, N is a natural number, given by $f^s(uv) = \frac{[f(u) + f(v) - 1]!}{[f(u) - 1]![f(v) - 1]!}$, for every edges uvof G and are all distinct and the function f is called the Super Beta combination labeling of G. In this paper, we prove, Star $K_{1,n}$, graph $P_m \cup P_n$, double triangular snake $D(T_n)$, graph $T_n\Theta K_1$, graph $Q_n \Theta K_1$, graph $T_m \cup Q_n$, graph $(P_m \Theta K_1) \cup (C_n \Theta K_1)$ are the Super Beta combination graphs.

Key Words: Super Beta combination graph and Super Beta combination labeling. Mathematical subject classification (2010) 05C78.

1. INTRODUCTION

The terminology and notations used here are in the sense of Harary [5]. Graph labelings were first introduced in the mid sixties. Graph labeling, where the *vertices* and *edges* are assigned real values or subsets of a set are subject to certain conditions. The concepts of graph labeling have been applied in missile guidance codes, Radar location codes, coding theory, circuit design, communication network, X-ray crystallography and radio-astronomy, etc. Throughout this paper, by a graph we mean a finite, undirected, simple graph. The vertex set and the edge set of a graph G are denoted by V(G) and E(G) respectively. Let G(p,q) be a graph with p = |V(G)| vertices and q = |E(G)| edges. A detailed survey of graph labeling can be found in J.A.Gallian survey [4]. Combinations play a major role in combinatorial problems. S.M.Hegde and Sudhakar Shetty introduced the concept of combinatorial labeling of graphs [6]. Motivated by these works, we defined Beta combination labeling and Super Beta combination labeling [9,10,11]. For detailed study of various graph labeling, we refer [7, 8]. In this paper we investigate a few Super Beta combination graphs. We use the following definitions in the subsequent sections.

Definition 1.1 [11] A graph G(p,q) is said to be a Super Beta combination graph if there exist a bijection $f:V(G) \to \{1,2,3,...,p\}$ such that the induced function $f^s:E(G) \to N$, N is a natural number, given by $f^s(uv) = \frac{[f(u) + f(v) - 1]!}{[f(u) - 1]![f(v) - 1]!}$, for every edges uv of G are all distinct and the

function f is called the Super Beta combination labeling of G.

Definition 1.2.[5] A walk in G is a finite non-null sequence $w = v_0 e_1 v_1 e_2 v_2 \dots e_k v_k$ whose terms are alternatively vertices and edges, such that, for $1 \le i \le k$, the ends of e_i are v_{i-1} and v_i . A walk is said

be a path if all the vertices are distinct. It is closed if $v_0 = v_k$ and is open otherwise. A closed path with $n \ge 3$ is called a cycle.

Definition 1.3.[4] A triangular snake is obtained from a path $v_1, v_2, ..., v_n$ by joining v_i and v_{i+1} to a new vertex w_i for i=1,2,...,n-1.

Definition 1.4.[4]: A double triangular snake consists of two triangular snakes that have a common path. That is, a double triangular snake is obtained from a path $u_1, u_2, ..., u_n$ by joining u_i and u_{i+1} to new vertex v_i for i = 1, 2, ..., n-1 and to a new vertex w_i for i = 1, 2, ..., n-1.

Definition 1.5.[4] A quadrilateral snake is obtained from a path $u_1, u_2, ..., u_n$ by joining u_i , u_{i+1} to new vertices v_i , w_i . That is, every edge of the path is replaced by the cycle.

Definition 1.6.[4] The corona $G_1\Theta G_2$ of two graphs G_1 and G_2 is defined as the graph G obtained by taking one copy of G_1 (which has p points) and p copies of G_2 and then joining the ith point of G_1 to every point in the ith copy of G_2 .

Definition 1.7. [5] A star S_n is a complete bipartite graph $K_{1,n}$ is a tree with one internal node and n leaves.

Definition 1.8. [5] The union of two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ is a graph $G = G_1U$ G_2 with vertex set $V = V_1U$ V_2 and the edge set $E = E_1U$ E_2 .

. In this paper, we prove, Star $K_{1,n}$, graph $P_m \cup P_n$, double triangular snake $D(T_n)$, graph $T_n \Theta K_1$, graph $Q_n \Theta K_1$, graph $T_m \cup Q_n$, graph $(P_m \Theta K_1) \cup (C_n \Theta K_1)$ are the Super Beta combination graphs.

2.Main Results

Theorem 2.1. Every star $K_{1,n}$ is a Super beta combination graph.

Proof: Let $K_{1,n}$ be the star graph with n+1 and n edges.

Let
$$V(K_{1,n}) = \{u_i : 1 \le i \le n+1\}$$
. Let $E(K_{1,n}) = \{u_i u_{n+1} : 1 \le i \le n\}$.

Define a bijection $f: V(K_{1,n}) \to \{1,2,3,...,n+1\}$ by $f(u_{n+1}) = 1$;

 $f(u_i) = i$ if $2 \le i \le n$. And f induces that $f^s : E(K_{1,n}) \to N$, where N is a natural number,

by
$$f^s(uv) = \frac{[f(u) + f(v) - 1]!}{[f(u) - 1]![f(v) - 1]!}$$
, for every edges uv of $K_{1,n}$ and are all distinct. That is f^s

is injective. Hence star graph $K_{1,n}$ is a Super beta combination graph.

Example 2.2. A Super beta combination labeling of $K_{1,8}$ is shown in the Figure-2.1.

Figure-2.2

Figure-2.1

Theorem 2.3. The graph $P_m \cup P_n$ Sh.

CO OSO OPEN CACCESS © CINEFORUM

Proof: Let P_m be a path graph with m vertices and m-1 edges.

Let
$$V(P_m) = \{u_i : 1 \le i \le n\}$$
. Let $E(P_m) = \{u_i u_{i+1} : 1 \le i \le m-1\}$.

Let P_n be a path graph with n vertices and n-1 edges.

Let
$$V(P_n) = \{v_i : 1 \le i \le n\}$$
. Let $E(P_n) = \{v_i v_{i+1} : 1 \le i \le n-1\}$.

Let $P_m \cup P_n$ be the union graph of paths P_m and P_n with m+n vertices and m+n-2 edges.

Let
$$V(P_m \cup P_n) = \{u_i : 1 \le i \le m; v_i : 1 \le i \le n\}$$
.

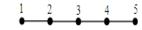
Let
$$E(P_m \cup P_n) = \{u_i u_{i+1} : 1 \le i \le m-1; v_i v_{i+1} : 1 \le i \le n-1\}$$
.

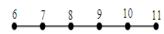
Define a bijection $f: V(P_m \cup P_n) \to \{1,2,3,...,m+n\}$ by $f(u_i) = i$ if $1 \le i \le m$ $f(v_i) = m + i$ if $1 \le i \le n$. And f induces that $f^s : E(P_m \cup P_n) \to N$, where N is a natural number, by $f^s(uv) = \frac{[f(u) + f(v) - 1]!}{[f(u) - 1]![f(v) - 1]!}$, for every edges uv of $P_m \cup P_n$ and are all distinct.

That is f^s is injective. Hence the graph $P_m \cup P_n$ is a Super beta combination graph.

Example 2.4. A Super beta combination labeling of path $P_5 \cup P_6$ is shown in the Figure-2.2.

Figure-2.2





double

Theorem 2.5. Every

triangular snake $D(T_n)$ is a Super beta combination graph.

Proof: Let $D(T_n)$ be a double triangular snake with 3n-2 vertices and 5n-5 edges.

Let
$$V(D(T_n)) = \{u_i : 1 \le i \le n ; v_i, w_i : 1 \le i \le n-1 \}.$$

Let
$$E(D(T_n)) = \{ u_i u_{i+1}, u_i v_i, u_i w_i, u_{i+1} v_i, u_{i+1} w_i, : 1 \le i \le n-1 \}.$$

Define a bijection $f: V(D(T_n)) \to \{1, 2, 3, ..., 3n - 2\}$ by $f(u_1) = 1$; $f(u_i) = 3i$ if $2 \le i \le n$; $f(v_i) = 3i - 1$ if $1 \le i \le n - 1$; $f(w_i) = 3i + 1$ if $1 \le i \le n - 1$.

And f induces that $f^s: E(D(T_n)) \to N$, where N is a natural number, by

$$f^{s}(uv) = \frac{[f(u) + f(v) - 1]!}{[f(u) - 1]![f(v) - 1]!}$$
, for every edges uv of $D(T_n)$ and are all distinct. That is f^{s} is

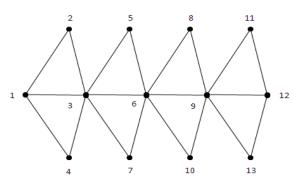
injective. Hence the double triangular snake $D(T_n)$ is a Super beta combination graph.

Example 2.6. A Super beta combination labeling of double triangular snake $D(T_5)$ is shown

in the Figure-2.3.

Theorem 2.7. Any beta Super **Proof:** Let $T_n \Theta K_1$ be

vertices and 5n-4Let



graph $T_n\Theta K_1$ is a combination graph. a graph with 4n-2edges.

$$V(T_n \Theta K_1) = \begin{cases} u_i : 1 \le i \le n, \ v_i : 1 \le i \le n - 1 \\ w_i : 1 \le i \le n, \ z_i : 1 \le i \le n - 1 \end{cases}$$

$$\text{Let } E(T_n \Theta K_1) = \begin{cases} u_i u_{i+1} : 1 \le i \le n-1; \ u_i v_i : 1 \le i \le n-1 \\ u_{i+1} v_i : 1 \le i \le n-1; \ u_i w_i : 1 \le i \le n \\ v_i z_i : 1 \le i \le n-1 \end{cases}$$

Define a bijection $f:V(T_n\Theta K_1) \rightarrow \{1,2,3,...,4n-2\}$ by $f(u_1)=2$;

$$f(u_i) = 3i + 2$$
 if $2 \le i \le n$; $f(v_i) = 4i - 1$ if $1 \le i \le n - 1$; $f(w_1) = 1$

$$f(w_i) = 4i + 2$$
 if $2 \le i \le n$; $f(z_i) = 4i$ if $1 \le i \le n - 1$.

that $f^s: E(T_n\Theta K_1) \to N$, where N is a natural number, by And f induces $f^{s}(uv) = \frac{[f(u) + f(v) - 1]!}{[f(u) - 1]![f(v) - 1]!}$, for every edges uv of $T_n \Theta K_1$ and are all distinct.

That is f^s is injective. Hence any graph $T_n\Theta K_1$ is a Super beta combination graph.

Theorem 2.8. The graph $Q_n\Theta K_1$ admits a Super beta combination labeling.

Proof: Let $Q_n \Theta K_1$ be a graph with 6n-4 vertices and 7n-6 edges.

Let
$$V(Q_n \Theta K_1) = \begin{cases} u_i : 1 \le i \le n; & v_i, w_i : 1 \le i \le n-1 \\ x_i : 1 \le i \le n; & y_i, z_i : 1 \le i \le n-1 \end{cases}$$
.

$$\text{Let } V(Q_n \Theta K_1) = \begin{cases} u_i : 1 \leq i \leq n; & v_i, w_i : 1 \leq i \leq n-1 \\ x_i : 1 \leq i \leq n; & y_i, z_i : 1 \leq i \leq n-1 \end{cases}$$

$$\text{Let } E(Q_n \Theta K_1) = \begin{cases} u_i u_{i+1}, u_i v_i, u_{i+1} w_i, v_i w_i : 1 \leq i \leq n-1 \\ u_i x_i : 1 \leq i \leq n; & v_i y_i : 1 \leq i \leq n-1 \\ w_i z_i : 1 \leq i \leq n-1 \end{cases}$$

Define a bijection $f: V(Q_n \Theta K_1) \to \{1, 2, 3, ..., 6n - 4\}$ by $f(u_1) = 2$;

$$f(u_i) = 6i + 1 \ if \ 2 \le i \le n \, ; \ f(v_i) = 6i - 3 \ if \ 1 \le i \le n - 1 \, ;$$

$$f(w_i) = 6i$$
 if $1 \le i \le n-1$; $f(x_1) = 1$; $f(x_i) = 6i + 2$ if $1 \le i \le n$

$$f(y_i) = 6i - 2 \text{ if } 1 \le i \le n - 1; \ f(z_i) = 6i - 1 \text{ if } 1 \le i \le n - 1.$$

And f induces that $f^s: E(Q_n \Theta K_1) \to N$, where N is a natural number, by

 $f^{s}(uv) = \frac{[f(u) + f(v) - 1]!}{[f(u) - 1]![f(v) - 1]!}$, for every edges uv of $Q_n\Theta K_1$ and are all distinct.

That is f^s is injective. Hence the graph $Q_n\Theta K_1$ admits a Super beta combination labeling.

Example 2.9. A Super beta combination labeling of graph $Q_4\Theta K_1$ is shown in the Figure-2.4.

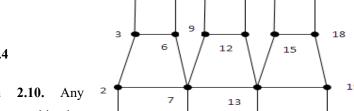


Figure-2.4

Theorem 2.10. Any Super beta combination

Proof: Let T_m be a 2m-1 vertices and

triangular snake with 3m-3 edges.

$$\text{Let } V(T_m) = \left\{ \; u_i : 1 \leq i \leq m \; ; \; v_i \; : 1 \leq i \leq m-1 \right\} \; . \; \text{Let } \; E(T_m) = \left\{ \; u_i u_{i+1} \; \; , \; u_i v_i \; , \; u_{i+1} v_i \; : 1 \leq i \leq m-1 \right\} \; .$$

14

Let Q_n be a quadrilateral snake with 3n-2 vertices and 4n-4 edges.

Let
$$V(Q_n) = \{ w_i : 1 \le i \le n ; x_i, y_i : 1 \le i \le n-1 \}$$
.

Let
$$E(Q_n) = \{ w_i w_{i+1}, w_i x_i, w_{i+1} y_i, x_i y_i : 1 \le i \le n-1 \}$$
.

Let $T_m \cup Q_n$ be a graph with 3m + 3n - 5 vertices and 3m + 4n - 7 edges.

Let
$$V(T_m \cup Q_n) = \begin{cases} u_i : 1 \le i \le m ; v_i : 1 \le i \le m-1 \\ w_i : 1 \le i \le n ; x_i, y_i : 1 \le i \le n-1 \end{cases}$$

Let
$$E(T_m \cup Q_n) = \begin{cases} u_i u_{i+1}, u_i v_i, u_{i+1} v_i : 1 \le i \le m-1 \\ w_i w_{i+1}, w_i x_i, w_{i+1} y_i, x_i y_i : 1 \le i \le n-1 \end{cases}$$

Define a bijection $f: V(T_m \cup Q_n) \rightarrow \{1,2,3,...,3m+3n-5\}$ by

$$f(u_i) = 2i - 1$$
 if $1 \le i \le m$; $f(v_i) = 2i$ if $1 \le i \le m - 1$; $f(w_i) = 2m - 3 + 3i$ if $1 \le i \le n$; $f(x_i) = 2m - 2 + 3i$ if $1 \le i \le n - 1$; $f(y_i) = 2m - 1 + 3i$ if $1 \le i \le n - 1$.

And
$$f$$
 induces that $f^s: E(T_m \cup Q_n) \to N$, where N is a natural number, by
$$f^s(uv) = \frac{[f(u) + f(v) - 1]!}{[f(u) - 1]![f(v) - 1]!}$$
, for every edges uv of $T_m \cup Q_n$ and are all distinct.

That is f^s is injective. Hence any graph $T_m \cup Q_n$ is a Super beta combination graph.

Theorem 2.11. The graph $(P_m \Theta K_1) \cup (C_n \Theta K_1)$ admits a Super beta combination labeling.

Proof: Let $P_m\Theta K_1$ be a comb graph with 2m vertices and 2m-1 edges.

Let $V(P_m \Theta K_1) = \{u_i : 1 \le i \le m ; v_i : 1 \le i \le m \}$.

Let $E(P_{\cdot \cdot \cdot} \Theta K_1) = \{u_i u_{i+1} : 1 \le i \le m-1; u_i v_i : 1 \le i \le m \}$. Let $C_n \Theta K_1$ be a crown with 2nvertices and 2n edges. Let $V(C_n \Theta K_1) = \{ w_i : 1 \le i \le n ; z_i : 1 \le i \le n \}$.

Let
$$E(C_n \Theta K_1) = \{ w_i w_{i+1} : 1 \le i \le n-1 ; w_1 w_n ; w_i z_i : 1 \le i \le n \}$$

Let $P_m\Theta K_1 \cup C_n\Theta K_1$ be the union graph with 2m+2n vertices and 2m+2n-1 edges.

Let
$$V(P_m \Theta K_1 \cup C_n \Theta K_1) = \begin{cases} u_i, v_i : 1 \le i \le m \\ w_i, z_i : 1 \le i \le n \end{cases}$$

Let
$$E(P_m \Theta K_1 \cup C_n \Theta K_1) = \begin{cases} u_i u_{i+1} : 1 \le i \le m-1; & u_i v_i : 1 \le i \le m \\ w_i w_{i+1} : 1 \le i \le n-1; & w_i w_n ; & w_i z_i : 1 \le i \le n \end{cases}$$

Define a bijection
$$f: V(P_m \Theta K_1 \cup C_n \Theta K_1) \rightarrow \{1,2,3,...,2m+2n\}$$
 by

$$f(u_i) = 2i - 1$$
 if $1 \le i \le m$; $f(v_i) = 2i$ if $1 \le i \le m$; $f(w_i) = 2m + n + i$ if $1 \le i \le n$;

$$f(z_i) = 2m + i$$
 if $1 \le i \le n$. And f induces that $f^s : E(P_m \Theta K_1 \cup C_n \Theta K_1) \to N$, where N is

a natural number, by
$$f^s(uv) = \frac{[f(u) + f(v) - 1]!}{[f(u) - 1]![f(v) - 1]!}$$
, for every edges uv of $(P_m\Theta K_1) \cup (C_n\Theta K_1)$

and are all distinct. That is f^s is injective. Hence the graph $(P_m\Theta K_1) \cup (C_n\Theta K_1)$ admits a Super beta combination labeling.

REFERENCES:

- [1] B.D. Acharya and S.M. Hegde, Arithmetic graphs, J.Graph Theory, 14(3)(1990), 275-299.
- [2] L. Beineke and S.M. Headstrongly multiplicative graphs, Discuss. Math. Graph Theory, 21(2001),63-75.
- [3] D.M. Burton, Elementary Number Theory, Second Edition, Wm.C. Brown company Publishers, 1980.
- [4] J.A. Gallian, A dynamic survey of graph labeling, The Electronic journal of combinatorics, 5(2002),# DS6,1-144.
- [5] F.Harary, Graph Theory, Addison-Wesley, Reading, Massachusetts, 1972.
- [6] S.M.Hegde and Sudhakar Shetty, Combinatorial Labelings of Graphs, Applied Mathematics E-Notes, 6(2006),251-258.
- [7] Selvarajan, T. M., and R. Subramoniam. "Prime graceful labeling." International Journal of Engineering and Technology 7.4.36 (2018): 750-752.
- [8] Selvarajan, T. M., and Swapna Raveendran. "Quotient square sum cordial labeling." International Journal of Recent Technology and Engineering (IJRTE) 8. 2s3 (2019): 138-142.
- [9] T.TharmaRaj, P.B.Sarasija, Beta Combination Graphs, Int. Jr. of Computer Applications Vol.76, No.14, 2013, 1-5.
- [10] T.TharmaRaj, P.B.Sarasija, On Beta Combination Labeling Graphs, Int.Jr. of Computer Applications, Vol.79, No.13, 2013, 26-29.
- [11] Raveendran, Swapna, and T. M. Selvarajan. "Radio Quotient Square Sum Labeling of a Graph." International Journal of Psychosocial Rehabilitation 24.1 (2020).

