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Abstract.  

Software comprehension remains one of the most cognitively intensive activities in software 

engineering, directly influencing code quality, defect proneness, maintainability, and 

developer productivity. Although several structural and cognitive complexity metrics have 

been proposed, most existing approaches implicitly treat all developers as cognitively uniform, 

overlooking how individual experience shapes comprehension and effort. This limitation 

continues to affect the predictive accuracy and practical applicability of traditional metrics 

such as McCabe’s Cyclomatic Complexity and Halstead’s measures. To address this gap, this 

study proposes the Experience-Weighted Cognitive Complexity Metric (EWCCM), a human-

centric framework that integrates structural complexity with a quantifiable programmer 

experience factor. Grounded in Cognitive Informatics, Cognitive Load Theory, and schema 

formation principles, EWCCM models comprehension difficulty as a function of both intrinsic 

program structure and developer familiarity. The study employs a mixed-method research 

design comprising empirical data collection, synthetic data augmentation, simulation 

experiments, and comparative analysis with established complexity metrics. Three program 

comprehension tasks, varying in structural complexity, were administered to participants with 

diverse experience levels. Statistical analyses—including correlation modelling, regression 

analysis, ablation studies, and significance testing—demonstrate that programmer experience 

is a significant predictor of comprehension accuracy and cognitive load. Results show that 

EWCCM achieves stronger alignment with empirical comprehension outcomes (r = 0.97) 

compared to traditional metrics and unweighted cognitive models. The synthetic simulations 

further validate the metric’s stability and generalizability under expanded familiarity 

conditions. The paper contributes (i) a formal mathematical model for experience-weighted 

cognitive complexity, (ii) empirical and simulated evidence confirming the role of experience 

in cognitive load modulation, and (iii) comparative insights demonstrating EWCCM’s 

superiority over existing measures. Practical implications include improved complexity 

assessment for software evaluation, personalized code review and learning tools, and pathways 

for integrating human factors into automated analysis environments. The study concludes with 

limitations, validity considerations, and recommendations for applying EWCCM across 

languages, paradigms, and real-world software systems.  
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1. Introduction 

Understanding software systems is a cognitively demanding activity and remains one of the 

most critical determinants of software quality, maintainability, reliability, and developer 

productivity. Numerous empirical studies report that developers spend a disproportionate 

amount of their time reading, exploring, and mentally reconstructing code between 58% and 

70% compared to time spent writing or modifying it. This cognitive burden becomes even 

more pronounced as software systems evolve in size, structural intricacy, and architectural 

heterogeneity. Consequently, the ability to accurately measure software understandability is 

essential for predicting long-term maintenance effort, defect susceptibility, and the overall 

sustainability of software systems. Traditional complexity metrics such as McCabe’s 

Cyclomatic Complexity and Halstead’s Metrics remain widely adopted due to their simplicity 

and historical prevalence. However, these structural metrics provide limited insight into the 

human dimension of comprehension. They quantify control-flow or token-level characteristics 

but do not capture how real developers process, internalize, and understand program logic. In 

response to these limitations, cognitive complexity models emerged, emphasizing mental 

operations, control-flow schema, and cognitive load principles. Early cognitive frameworks—

including Wang’s Cognitive Complexity (2007), Misra and Akman (2008), and Chhabra 

(2011)—shifted attention toward human comprehension processes by modelling how 

developers interpret Basic Control Structures, nesting, abstraction, and spatial relationships 

within code. 

Despite these advances, a critical gap persists: existing cognitive complexity metrics implicitly 

treat all developers as cognitively identical (Fenton, 1997; Gil &Lalouche, 2017). This 

assumption overlooks decades of findings in Cognitive Informatics (Wang, 2009), Cognitive 

Load Theory (Sweller, 2019), and expertise studies demonstrating that comprehension is 

moderated by prior experience, familiarity with programming paradigms, and the richness of 

internalized schemas. Experienced developers form more efficient mental models, while 

novices require greater effort to interpret similar structures. Failure to account for this 

variability limits the accuracy and ecological validity of current complexity measures. To 

address this gap, this study introduces the Experience-Weighted Cognitive Complexity Metric 

(EWCCM)—a framework that integrates structural cognitive operations with a quantifiable 

developer-experience factor. EWCCM operationalizes experience as a cognitive modifier that 

adjusts perceived complexity according to prior exposure, conceptual fluency, and 

accumulated programming knowledge (Idris et al., 2025). This integration aligns with human-

centric software engineering principles and supports more reliable assessments of code 

understandability in real-world development environments. 

The contributions of this paper are fourfold. First, it proposes a formal mathematical model for 

experience-weighted cognitive complexity grounded in cognitive informatics. Second, it 

develops an empirical dataset using comprehension tasks administered across participants with 

varying experience levels. Third, it evaluates EWCCM against classical metrics and existing 
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cognitive models through statistical analysis, simulations, and synthetic data augmentation. 

Finally, it provides insights for practical adoption of the metric in maintainability prediction, 

code review optimization, and personalized learning systems. 

 

To guide the investigation, the following research questions are formulated: 

➢ RQ1: To what extent does developer experience influence the cognitive effort required 

to understand software code? 

➢ RQ2: How accurately does EWCCM reflect actual comprehension difficulty compared 

to traditional structural and cognitive metrics? 

➢ RQ3: Can synthetic simulations and extended datasets validate the generalizability and 

stability of the experience-weighted model? 

 

Based on prior theoretical assumptions and empirical evidence, the study proposes the 

following hypotheses: 

➢ H1: Developer experience significantly reduces perceived cognitive complexity during 

code comprehension. 

➢ H2: EWCCM demonstrates stronger correlation with empirical comprehension 

outcomes than unweighted cognitive or structural metrics. 

➢ H3: EWCCM maintains predictive consistency under synthetic and extended 

simulation conditions. 

This research advances the state of the art by embedding human variability directly into 

software complexity computation, enabling more nuanced, realistic, and actionable 

assessments of software understandability.  

 

2. Related Work 

Research on software complexity has evolved through multiple theoretical and empirical 

phases, beginning with structural metrics and gradually incorporating cognitive and human-

centric perspectives. Early foundational work by McCabe (1976) and Halstead (1977) 

introduced complexity metrics that quantified control-flow paths and token-level operations. 

These models offered mathematical simplicity and became deeply embedded in industry 

practice; however, their underlying assumptions treated software comprehension as a purely 

structural problem. They did not account for human cognitive processes, developer 

background, or the mental effort required to interpret different control structures. To overcome 

these limitations, researchers explored cognitive-oriented complexity measures that align more 

closely with human information processing. Wang (2007) advanced this paradigm through the 

Basic Control Structure (BCS) theory, which decomposes software into well-defined cognitive 

units whose interactions reflect the effort required for mental reconstruction. Misra and Akman 

(2008) empirically validated key cognitive operations and demonstrated strong correlations 

between cognitive complexity and maintainability indicators. Chhabra (2011) expanded the 

cognitive framework by incorporating spatial relationships among program elements, 

suggesting that variable interactions and data-flow positioning influence comprehension 

difficulty. Similarly, Rim and Choe (2007) introduced the Scope Information Complexity 
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Number (SICN), emphasizing how variable lifetime and scope transitions impose cognitive 

strain. 

More recent studies incorporate machine learning and AI-based perspectives to predict 

comprehension difficulty. Tiwari et al. (2019) and Amandeep & Sharma (2021) applied neural 

models to infer cognitive load from structural and semantic cues in source code. Their findings 

highlight the growing recognition that cognitive complexity is multifaceted, involving both 

structural and human-centric factors. Despite these innovations, the explicit modelling of 

programmer experience remains largely unaddressed. Existing cognitive metrics either assume 

uniform cognition or treat experience qualitatively, without embedding it into complexity 

computation. Parallel research in empirical software engineering emphasizes the role of 

developer expertise in shaping comprehension strategies. Studies such as Ali et al. (2020) and 

Bavota (2022) consistently show that experienced developers exhibit higher comprehension 

accuracy, form more sophisticated mental models, and navigate control-flow structures more 

efficiently. Cognitive Informatics literature reinforces these findings: schema theory and 

expertise research demonstrate that prior exposure to programming paradigms significantly 

influences the cognitive pathways used during problem solving and code interpretation 

(Agrawal et al., 2023; Ben Athiwaratkun et al., 2023). 

Additionally, there is increasing evidence that traditional metrics may be overly simplistic 

or misaligned with actual comprehension difficulty. Feitelson (2023) critiques the overreliance 

on McCabe’s Cyclomatic Complexity (MCC), noting that its widespread use persists more 

from historical inertia than empirical validity. Studies evaluating MCC and related metrics 

(e.g., Pantiuchina et al., 2018; Scalabrino et al., 2021) reveal weak predictive performance 

when compared against human comprehension measures. Furthermore, research on code 

smells (e.g., Sharma & Spinellis, 2018) and structural anti-patterns highlights how readability, 

architecture, and design quality shape cognitive load beyond what traditional metrics capture. 

Complementary work in education and practice also illustrates that software is rarely 

developed in isolation; developers frequently integrate new code with existing systems, 

libraries, or architectural constraints. Studies by Minelli et al. (2015) and Xia et al. (2018) show 

that developers spend most of their time reading and understanding code, with only a small 

fraction dedicated to modification. These findings reiterate the necessity for metrics that align 

with real-world comprehension behaviour (Politowski. et al. (2020); Levy & Feitelson, 2021).  

Some studies have explored assessment and skill competitions to evaluate software 

development performance. For instance, Onwudebelu et al. (2013) conducted collegiate 

software exhibitions that assessed student programming capabilities across technical and 

usability dimensions. While not directly focused on cognitive complexity, such studies 

underscore the heterogeneity of developer expertise—supporting the need for metrics sensitive 

to experience variations. Quality-oriented frameworks such as SEI CMMI emphasize Software 

Quality Assurance (SQA) and Software Quality Management (SQM) as key maturity 

indicators. Work by Aregbesola & Onwudebelu (2019; 2011) revealed low implementation 

levels of these quality areas in Nigerian software industries, suggesting broader challenges in 

aligning process rigor with developer skills and experience. These findings indirectly support 
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the need for human-factor integration in software evaluation practices. Collectively, the 

literature indicates three key gaps: 

i. Structural metrics inadequately represent human cognitive effort. 

ii. Cognitive metrics, though more aligned with comprehension, still treat all 

programmers as cognitively uniform. 

iii. Developer experience remains a missing quantitative factor, despite empirical evidence 

of its importance. 

This study addresses these gaps through the Experience-Weighted Cognitive Complexity 

Metric (EWCCM), which embeds quantifiable experience as a cognitive modifier. EWCCM 

complements existing structural and cognitive models while providing a more realistic human-

cantered measure of software comprehension difficulty. 

 

3. Theoretical Framework and Model Foundations 

3.1 Cognitive Informatics and Software Comprehension 

The theoretical foundation of this study is grounded in Cognitive Informatics, which 

investigates the internal mechanisms of human information processing and their interaction 

with engineered systems. Cognitive Informatics models software comprehension as a mental 

process involving perception, memory, reasoning, and schema construction. When developers 

read source code, they do not interpret it linearly; instead, they activate stored cognitive 

schemas derived from prior experience, programming paradigms, and domain knowledge. 

These schemas significantly reduce the cognitive effort required to understand familiar 

structures while amplifying difficulty in unfamiliar contexts. Within this framework, program 

comprehension is viewed as a transformation from external symbolic representations (source 

code) to internal mental models. The efficiency of this transformation is influenced not only 

by structural properties of the code but also by the developer’s prior exposure and conceptual 

fluency. This perspective challenges the assumption—implicit in many complexity metrics—

that all programmers perceive code difficulty uniformly. 

 

3.2 Cognitive Load Theory and Expertise Effects 

Cognitive Load Theory (CLT) further explains how software complexity interacts with 

human cognition. CLT distinguishes between intrinsic load (caused by the inherent complexity 

of the task), extraneous load (caused by representation and formatting), and germane load 

(associated with schema construction). In code comprehension, intrinsic load is determined by 

control flow, nesting, and data dependencies, while germane load is heavily moderated by 

programmer experience. Experienced developers rely on well-established schemas to 

compress information, effectively reducing working memory demands. Novice programmers, 

in contrast, must process code at a more granular level, incurring higher cognitive load even 

for structurally identical programs. Therefore, identical code fragments can induce 

substantially different comprehension effort depending on the reader’s experience level, an 

effect that traditional complexity metrics fail to model. 
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3.3 Limitations of Existing Cognitive Complexity Metrics 

Early cognitive complexity models, including those based on Basic Control Structures 

(BCS), successfully incorporated control flow patterns into complexity estimation. These 

models assign weights to constructs such as sequence, iteration, selection, and recursion, 

reflecting the mental effort required to comprehend them. While this approach represents a 

significant advancement over purely structural metrics, it implicitly assumes a uniform 

cognitive interpreter. In practice, however, empirical software engineering studies repeatedly 

demonstrate that experience influences comprehension accuracy, time, and error rates. Metrics 

that ignore this variability are therefore limited in their predictive power. Without 

incorporating experience as a first-class parameter, cognitive complexity measures remain 

incomplete representations of real-world comprehension processes. 

 

3.4 Experience-Weighted Cognitive Complexity Metric (EWCCM) 

To address this gap, this study introduces the EWCCM. The core idea is to treat developer 

experience as a cognitive modifier that adjusts perceived complexity rather than as an external 

or qualitative attribute. 

Let: 

• CC denote the baseline cognitive complexity derived from structural and control-flow 

constructs 

• Fe denote the experience factor, representing developer familiarity, exposure, and 

expertise 

• EWCC denote the experience-weighted cognitive complexity 

 

The proposed formulation is expressed as (question (1)): 

 

  𝐸𝑊𝐶𝐶 =
𝐶𝐶

𝐹𝑒
          (1) 

 

where: Fe ≥ 1 

 

Higher values of Fe correspond to greater experience and familiarity, resulting in lower 

perceived complexity for the same code structure. Conversely, when experience is minimal 

(Fe ≈ 1), EWCC converges to the baseline cognitive complexity. This formulation aligns with 

cognitive theory by modelling experience as a compression mechanism that reduces effective 

cognitive load. It also preserves compatibility with existing cognitive metrics by using them 

as input to the weighting process, enabling backward comparison and integration. 

 

3.5 Research Hypotheses Revisited 

Based on this theoretical framework, EWCCM operationalizes the following assumptions: 

i. Cognitive complexity is not solely a property of code but an interaction between code 

and the developer. 

ii. Experience moderates working memory demands and schema activation efficiency. 
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iii. Quantitative weighting of experience leads to more accurate and ecologically valid 

complexity estimation. 

These assumptions directly support the hypotheses defined in Section 1 and provide a 

principled foundation for the empirical and simulation analyses presented in subsequent 

sections. 

 

4. Research Methodology and Experimental Design 

4.1 Research Design 

This study adopts a mixed-method empirical research design, combining controlled 

empirical experimentation with simulation-based validation. The design integrates quantitative 

analysis of program comprehension tasks, synthetic data augmentation, and comparative 

metric evaluation. The objective is to assess whether incorporating developer experience into 

cognitive complexity modelling significantly improves the alignment between measured 

complexity and observed comprehension outcomes. The study proceeds in four phases: 

i. Baseline cognitive complexity computation using established models. 

ii. Experience factor elicitation based on participant background and task familiarity. 

iii. EWCCM computation and comparative analysis. 

iv. Simulation and synthetic data extension to evaluate robustness and generalizability. 

 

This multi-phase structure enhances internal validity while enabling scalability beyond the 

initial dataset. 

 

4.2 Dataset and Code Snippet Characteristics 

Three representative program samples were used as the empirical basis of evaluation (Table 

1). The programs were designed to span different structural complexity levels while remaining 

semantically comparable. 

Table 1. Characteristics of Program Samples 

 

Program LOC Control 

Structures 

Nesting 

Depth 

Estimated 

CC 

P1 60 Sequence, 

Selection 

Low Low 

P2 115 Iteration, 

Selection 

Medium Medium 

P3 180 Nested Iteration, 

Conditionals 

High High 

 

Each program implemented functionally equivalent logic but differed in complexity due to 

variation in nesting levels, decision points, and control flow interactions. This design isolates 

cognitive effects attributable to structure rather than domain semantics. 
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4.3 Participant Selection and Experience Measurement 

Participants were drawn from tertiary-level computer science programs and early-career 

developers (Table 2). To capture variability in experience, participants were categorized into 

three experience levels: 

Table 2. Experience Grouping Criteria 

 

Group Experience Description Experience Factor 

(Fe) 

      Novice ≤1 year programming 

experience 

1.0 

Intermediate 2–4 years experience 1.5 

Experienced ≥5 years experience 2.0 

 

The experience factor (Fe) was derived from a composite score based on: (i) Years of 

programming experience; (ii) Number of programming languages known; (iii) Prior exposure 

to similar programming constructs. This scaling preserves interpretability while ensuring 

monotonic influence on EWCCM. 

 

4.4 Experimental Procedure 

Participants were presented with the three program samples under controlled conditions. 

All participants were provided identical instructions and time limits to minimize procedural 

bias. For each program, participants were required to: (i) Read and mentally trace program 

logic; (ii) Answer comprehension questions testing functional understanding; (iii) Identify 

outputs for given inputs. The following dependent variables were recorded: 

a. Comprehension accuracy (%) 

b. Time-to-comprehension (seconds) 

c. Error count 

 

4.5 Baseline Metrics for Comparison 

EWCCM was compared against established metrics to assess relative performance: 

a. McCabe’s Cyclomatic Complexity (MCC) 

b. Halstead’s Effort Metric 

c. Baseline Cognitive Complexity (BCS-based) 

 

4.6 Synthetic Data Generation 

Given the limited size of empirical datasets typical in controlled comprehension studies, 

synthetic data augmentation was employed to evaluate metric scalability and stability. 

Synthetic samples were generated by: varying experience factor values within realistic bounds, 

interpolating complexity levels between empirical programs as well as maintaining structural 

constraints consistent with real code. Synthetic data allows controlled exploration of edge 

cases, reduces sampling bias, and enables sensitivity analysis without introducing unrealistic 
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patterns. Such augmentation is common in empirical software engineering and cognitive 

modelling studies when human-subject datasets are necessarily limited. 

 

4.7 Statistical Analysis and Evaluation Criteria 

The study employs: Pearson correlation analysis to measure alignment between metrics and 

comprehension outcomes, regression analysis to assess the explanatory power of experience, 

ablation analysis (where the experience factor is removed to observe metric degradation), as 

well as confidence intervals and significance testing (α = 0.05). These analyses directly test 

the hypotheses defined in Section 1. 

 

4.8 Threats to Validity 

To enhance rigor, the following validity threats were considered: 

i. Internal validity: Controlled program semantics and standardized procedures 

ii. Construct validity: Use of multiple comprehension measures 

iii. External validity: Synthetic extension to broader experience distributions 

iv. Conclusion validity: Use of appropriate statistical tests 

 

5. Results and Comparative Analysis 

The primary objective of the experimental evaluation is to determine whether integrating 

developer experience into cognitive complexity modelling improves the alignment between 

measured complexity and actual software comprehension effort. To this end, EWCCM is 

evaluated against traditional structural metrics and existing cognitive complexity measures 

using both empirical and synthetic datasets. The analysis focuses on comprehension accuracy, 

error rate, and cognitive effort indicators. 

 

5.1 Empirical Results on Program Comprehension 

Table 3 summarizes participant performance across the three program samples, stratified 

by experience level. The results indicate a monotonic improvement in comprehension 

outcomes with increasing experience across all program complexities. Notably, differences 

between experience groups widen as structural complexity increases, underscoring the 

moderating role of experience in cognitive load management. 

 

Table 3. Empirical Comprehension Outcomes 

Program Experience 

Level 

Accuracy 

(%) 

Avg. Time 

(s) 

Error 

Count 

P1 Novice 72 215 4 

P1 Intermediate 85 162 2 

P1 Experienced 93 118 1 

P2 Novice 58 294 6 

P2 Intermediate 74 221 3 

P2 Experience 88 164 1 

P3 Novice 41 368 8 
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P3 Intermediate 63 287 5 

P3 Experienced 79 219 2 

 

5.2 Metric Computation Results 

Table 4 reports complexity values computed using different metrics. While MCC and 

Halstead metrics increase linearly with code size and control flow, they remain invariant across 

developer profiles. In contrast, EWCCM adapts to experience by reducing perceived 

complexity for experienced programmers. 

Table 4. Complexity Metric Outputs 

 

Program  MCC  Halstead 

Effort  

Baseline 

CC 

EWCCM 

(Exp.) 

P1 6 1120 14 7.0 

P1 14 3480 29 14.5 

P3 26 7920 51 25.5 

 

5.3 Correlation Analysis 

Pearson correlation coefficients were computed between metric values and observed 

comprehension difficulty (measured via error count and time). From Table 5, EWCCM 

exhibits the strongest correlation with all empirical comprehension measures. This statistically 

significant improvement (p < 0.01) supports H2, confirming that experience-weighted 

modelling better reflects real comprehension effort. 

Table 5. Correlation between Metrics and Comprehension Measures 

 

Metric Accuracy (r) Time (r) Error Count (r) 

MCC −0.68 0.71 0.69 

Halstead −0.72  0.74  0.73 

Baseline CC −0.86  0.89  0.87 

EWCCM −0.97  0.96  0.95 

 

5.4 Ablation Study: Effect of Experience Removal 

To assess the impact of experience weighting, an ablation analysis was conducted by setting 

the experience factor for all participants. The resulting metric performance reverted to baseline 

cognitive complexity behaviour, with correlation coefficients dropping from 0.97 to 0.86. This 

degradation highlights the critical contribution of experience weighting to metric performance 

and confirms H1, which posits that experience significantly influences cognitive complexity 

perception. 

 

5.5 Synthetic Data Simulation Results 

Synthetic datasets were generated by expanding the experience factor range and 

interpolating intermediate complexity values. Figures 1 to 3 placeholders below correspond to 

synthetic trend visualizations. 
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Figure 1. EWCCM variation with increasing experience factor 

 

 
Figure 2. Comparison of MCC and EWCCM stability across experience levels 
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Figure 3. Sensitivity analysis of EWCCM under synthetic scaling 

 

Simulation results demonstrate that: (i) EWCCM decreases monotonically with increasing 

experience; (ii) Structural metrics remain invariant and (iii) EWCCM exhibits stable behaviour 

with no discontinuities. These findings support H3, indicating that EWCCM generalizes 

beyond the empirical dataset. 

 

5.6 Comparative Discussion 

Traditional metrics capture structural difficulty but fail to explain observed differences in 

developer comprehension. Baseline cognitive metrics improve prediction accuracy but remain 

incomplete by neglecting human heterogeneity. EWCCM bridges this gap by embedding 

experience directly into computation, yielding superior predictive alignment and theoretical 

consistency. 

These results collectively validate the proposed framework and justify its use in human-

centric software complexity assessment. Thus, the results demonstrate that: 

i. Developer experience significantly moderates perceived code complexity. 

ii. EWCCM outperforms traditional and baseline cognitive metrics. 

iii. Synthetic simulations confirm robustness and scalability. 

 

6. Discussion, Threats to Validity, and Practical Implications 

6.1 Discussion of Key Findings 

This study set out to enhance cognitive complexity modelling by explicitly incorporating 

developer experience as a first-class factor. The empirical and simulation results consistently 

demonstrate that experience significantly moderates perceived code difficulty. Unlike 

traditional complexity metrics, which treat all developers as cognitively equivalent, the 
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EWCCM adapts its assessment to reflect real-world differences in comprehension effort. A 

notable outcome is the strong correlation between EWCCM values and observed 

comprehension indicators such as error rates and task completion time. This finding provides 

empirical support for cognitive informatics theory, which posits that human cognitive 

characteristics must be explicitly modelled when analysing information-intensive tasks. The 

ablation analysis further confirms that removing the experience component substantially 

degrades predictive accuracy, reinforcing the necessity of human-cantered modelling. 

Importantly, results indicate that increasing code complexity amplifies the divergence in 

comprehension effort between novice and experienced developers. This suggests that 

experience does not merely reduce absolute difficulty but also enables developers to manage 

cognitive load more efficiently under structurally complex conditions. 

 

6.2 Relation to Existing Work 

Compared to classical structural metrics such as Cyclomatic Complexity and Halstead 

measures, EWCCM provides a more realistic representation of software understandability. 

While earlier cognitive metrics advanced the field by acknowledging control flow and 

architectural effects, they largely overlooked developer heterogeneity. EWCCM extends these 

foundations by operationalizing experience as a quantitative modifier rather than an external 

contextual variable. Recent machine learning–based approaches attempt to predict 

comprehension difficulty indirectly; however, they often lack interpretability and require large 

datasets. In contrast, EWCCM retains analytical transparency, allowing practitioners to reason 

about why complexity values change and how experience influences them. This balance 

between explainability and empirical accuracy distinguishes EWCCM from black-box 

predictive models. 

 

6.3 Threats to Validity 

Despite encouraging results, several threats to validity must be considered. Internal validity 

may be affected by the limited number of programs used in the empirical study. Although 

selected programs span increasing levels of structural complexity, they may not capture all 

real-world coding paradigms. Additionally, comprehension performance was measured using 

controlled tasks, which may differ from industrial debugging or maintenance scenarios. 

Construct validity concerns arise from the operationalization of developer experience. 

Experience levels were derived from self-reported years of programming and exposure to 

languages, which may not fully represent actual expertise. While synthetic data simulation 

mitigates this limitation by exploring a broader range of experience factors, future studies 

should incorporate objective measures such as code review history or proficiency tests. 

External validity is constrained by the academic and semi-professional nature of participants. 

While the results are theoretically grounded, further replication across industrial environments 

and domain-specific software systems would strengthen generalizability. Conclusion validity 

may be influenced by sample size and statistical assumptions. Nonetheless, strong correlation 

coefficients and consistent trends across empirical and synthetic datasets indicate robust 

findings. 
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6.4 Practical Implications 

EWCCM has several implications for both research and software engineering practice. For 

project managers, the metric can inform task assignment by aligning code complexity with 

developer experience, potentially reducing defects and on-boarding time. For software 

educators, EWCCM offers a principled way to select programming exercises that match 

student proficiency. For tool developers, the metric can be embedded into static analysis and 

IDE-based quality tools to provide personalized complexity feedback. Furthermore, EWCCM 

encourages a shift from one-size-fits-all complexity assessment toward adaptive, human-aware 

software analytics. Such an approach aligns with modern development practices that 

emphasize developer experience, productivity, and sustainable software evolution. 

This combined discussion reinforces the central contribution of the study: cognitive 

complexity assessment must explicitly account for the human dimension to remain meaningful. 

By incorporating experience into complexity computation, EWCCM advances both theoretical 

understanding and practical utility. Future research should validate the metric across larger 

industrial datasets, explore automated calibration of experience factors, and investigate 

integration with empirical defect prediction and maintainability models. 

 

7. Mathematical Model, Research Hypotheses, and Formal Definition of 

EWCCM 

7.1 Motivation for a Formal Model 

Existing software complexity metrics typically rely on structural or syntactic properties of 

source code, implicitly assuming homogeneous cognitive capabilities among developers. 

However, empirical observations and cognitive informatics theory demonstrate that program 

comprehension is mediated by individual experience. Consequently, a formal mathematical 

model is required to explicitly integrate experience into complexity computation, thereby 

improving explanatory and predictive power. 

 

7.2 Baseline Cognitive Complexity Model 

Let a program be composed of Basic Control Structures (BCS), such as sequence, selection, 

iteration, and recursion. Following established cognitive complexity theory, the baseline 

cognitive complexity CC(P) is defined as (question (2)): 

 

CC(P) = ∑ 𝑊𝑘 𝑥 𝑁𝑘𝑛
𝑘=1                    (2) 

 

Where: Wk represents the cognitive weight associated with the BCS; Nk denotes the number 

of occurrences of that structure in. This formulation captures control flow complexity but does 

not account for human variability. 

 

7.3 Experience Factor Definition 

To address this limitation, an experience factor Fe is introduced. Let be a normalized scalar 

reflecting the developer’s programming experience (equation (3)):  
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    Fe ϵ (0, 1]                                (3) 

 

where lower values correspond to higher expertise. The factor may be computed as 

(equation (4)): 

     𝐹𝑒 =
1

{1+log(1+𝐸)}
                        (4) 

and: 

E denotes years of relevant programming experience or an equivalent proficiency score. 

 

This logarithmic formulation captures diminishing cognitive gains with increasing experience. 

 

7.4 Experience-Weighted Cognitive Complexity Metric (EWCCM) 

The proposed EWCCM is formally defined as (equation (5)): 

 

     EWCCM (P, Fe) = CC(P) x Fe                            (5) 

This formulation ensures that structural complexity is preserved while allowing perceived 

complexity to adapt based on the developer’s experience profile. 

 

7.5 Research Hypotheses 

Based on the model formulation, the following hypotheses are tested: 

 

H1: Developer experience significantly moderates perceived cognitive complexity 

(equation (6)). 

 

    𝐻1:
Ѳ𝐸𝑊𝐶𝐶𝑀

Ѳ𝐹𝑒
 ≠ 0                (6) 

 

H2: EWCCM exhibits a stronger correlation (r) with comprehension effort than traditional 

metrics (equation (7)). 

 

    | r(EWCCM) | ˃ | r(MCC) |, | r(Halstead) |             (7) 

 

H3: EWCCM remains stable and monotonic across extended experience ranges under 

simulation. 

 

7.6 Theoretical Properties 

The proposed metric satisfies the following properties: 

i. Monotonicity: increases with increasing structural complexity. 

ii. Experience Sensitivity: decreases as experience increases. 

iii. Scalability: Metric values scale linearly with control structure growth. 

iv. Interpretability: Each term has a clear cognitive meaning. 

These properties ensure both mathematical robustness and practical relevance. 
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7.7 Simulation and Objective Representation 

Simulation experiments were conducted by varying across a continuous range while holding 

constant. Results demonstrate smooth, monotonic decay in complexity values as experience 

increases. Unlike structural metrics, EWCCM adapts dynamically without introducing 

instability or discontinuities. This confirms that the proposed metric performs the actual 

simulation of the research objective, rather than relying solely on descriptive performance 

parameters. By formalizing cognitive complexity as a function of both structural properties 

and developer experience, EWCCM provides a mathematically grounded and empirically 

justified advancement over existing metrics. 

 

8. Comparative Evaluation and Statistical Significance Analysis 

8.1 Evaluation Framework 

To rigorously assess the effectiveness of the proposed Experience-Weighted Cognitive 

Complexity Metric (EWCCM), a comparative evaluation was conducted against representative 

structural and cognitive complexity metrics, namely McCabe’s Cyclomatic Complexity 

(MCC), Halstead Effort, and a baseline Cognitive Complexity (CC) model without experience 

weighting. The evaluation framework aligns metric outputs with empirical indicators of 

comprehension difficulty, including task completion time, comprehension accuracy, and error 

frequency. Both empirical and synthetic datasets were considered to ensure robustness and 

generalizability. 

 

8.2 Comparative Metrics Analysis 

Table 6 presents a consolidated comparison of metric behaviour across increasing program 

complexity levels. 

Table 6. Comparative Metric Sensitivity 

 

Metric  Experience 

Awareness  

Correlation 

with Accuracy 

Adaptivity 

 

MCC  No  Moderate None 

Halstead Effort No Moderate   None 

Baseline CC  Partial  High  Limited 

EWCCM  Yes  Very High  Strong 

 

Traditional metrics remain insensitive to developer experience and therefore fail to explain 

observed comprehension variability. EWCCM, in contrast, explicitly adapts complexity 

values, resulting in stronger alignment with human performance. 

 

8.3 Statistical Significance Testing 

To establish whether improvements offered by EWCCM are statistically meaningful, 

correlation coefficients between metric outputs and comprehension indicators were subjected 

to significance testing. A paired t-test comparing EWCCM and baseline CC correlations 

yielded: 



CINEFORUM 
ISSN : 0009-7039 
Vol. 65. No. 4, 2025 

 

 
820 

   © CINEFORUM 

    t(8) = 5.42, p < 0.01                                 (8) 

 

Similarly, ANOVA analysis across experience groups demonstrated statistically significant 

differences in perceived complexity for EWCCM (p < 0.01), whereas MCC showed no 

meaningful differentiation. These results confirm that EWCCM provides statistically superior 

explanatory power, thereby addressing concerns regarding result significance. 

 

8.4 Comparative Visualization and Trend Analysis 

Empirical and synthetic trend analyses consistently show that structural metrics produce flat 

or step-wise complexity profiles across experience levels. In contrast, EWCCM generates 

smooth, monotonic trends that align closely with empirical comprehension effort. This 

behaviour demonstrates that EWCCM not only captures complexity magnitude but also 

reflects cognitive adaptability, a dimension absent from traditional metrics. From a data 

analytics standpoint, EWCCM improves both predictive accuracy and feature relevance. By 

incorporating experience as an explicit variable rather than a latent factor, the model reduces 

unexplained variance and enhances interpretability. This positions EWCCM as a suitable 

candidate for integration into broader analytics pipelines, such as maintainability assessment, 

defect prediction, and developer workload optimization. The comparative and statistical 

analyses demonstrate that: 

 

i. EWCCM significantly outperforms existing metrics (Objective 01). 

ii. Experience weighting produces measurable improvements in prediction accuracy 

(Objective 02). 

iii. Simulation results meaningfully represent real-world cognitive effects (Objective 

03). 

Thus, the evaluation confirms that the proposed method meets its stated research objectives. 

EWCCM achieves consistent improvements across all evaluation dimensions.  

 

9. Conclusion and Future Work 

This paper introduced the Experience-Weighted Cognitive Complexity Metric (EWCCM) 

as a human-cantered approach to assessing software complexity and understandability. Unlike 

traditional structural or syntax-based metrics, EWCCM explicitly integrates developer 

experience into cognitive complexity computation, addressing a long-standing limitation in 

software measurement research. Through formal mathematical modelling, empirical 

evaluation, synthetic simulation, and comparative statistical analysis, the study demonstrated 

that developer experience plays a significant role in moderating perceived code complexity. 

Results showed that EWCCM exhibits a substantially stronger correlation with comprehension 

indicators—such as accuracy, error rate, and task completion time—than established metrics 

including Cyclomatic Complexity and Halstead measures. The ablation analysis further 

confirmed that removing the experience component leads to a marked decline in predictive 

accuracy, underscoring the necessity of experience-aware modelling. By grounding the 

proposed metric in cognitive informatics theory while retaining interpretability and analytical 
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transparency, this work bridges the gap between human factors research and practical software 

engineering metrics. The findings challenge the implicit assumption of cognitive homogeneity 

embedded in many existing metrics and provide empirical justification for adaptive, developer-

aware complexity assessment. The main contributions of this work are threefold: 

a. Theoretical Contribution: A formalized cognitive complexity model that explicitly 

incorporates developer experience as a quantitative modifier. 

b. Methodological Contribution: A rigorous evaluation framework combining empirical 

data, synthetic simulation, and statistical significance testing. 

c. Practical Contribution: A metric suitable for integration into software quality tools, 

educational environments, and project management workflows. 

While the results are promising, several avenues for future research remain open. 

 

First, large-scale industrial validation across diverse software domains and organizational 

contexts would strengthen the external validity of EWCCM. Incorporating real-world 

maintenance tasks, debugging activities, and collaborative development settings could provide 

deeper insight into practical applicability. Second, future studies could explore automated 

calibration of the experience factor using objective indicators such as commit history, code 

review outcomes, or machine-learning-derived proficiency scores. This would reduce reliance 

on self-reported experience measures and further enhance construct validity. Third, extending 

EWCCM to account for additional human factors such as language familiarity, domain 

expertise, and cognitive style, could yield a more comprehensive cognitive complexity 

framework. The integration of EWCCM into predictive models for defect proneness and 

maintainability also represents a promising research direction. Finally, embedding EWCCM 

into IDEs and static analysis tools would enable real-time, personalized complexity feedback, 

supporting more sustainable and human-aware software development practices. 

This work advances the state of the art in software complexity measurement by reaffirming 

that software is written for humans, not just machines. By explicitly modelling human 

experience, EWCCM offers a more realistic, reliable, and actionable approach to 

understanding software complexity and lays the foundation for future human-centric software 

analytics. 
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