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Abstract.

Software comprehension remains one of the most cognitively intensive activities in software
engineering, directly influencing code quality, defect proneness, maintainability, and
developer productivity. Although several structural and cognitive complexity metrics have
been proposed, most existing approaches implicitly treat all developers as cognitively uniform,
overlooking how individual experience shapes comprehension and effort. This limitation
continues to affect the predictive accuracy and practical applicability of traditional metrics
such as McCabe’s Cyclomatic Complexity and Halstead’s measures. To address this gap, this
study proposes the Experience-Weighted Cognitive Complexity Metric (EWCCM), a human-
centric framework that integrates structural complexity with a quantifiable programmer
experience factor. Grounded in Cognitive Informatics, Cognitive Load Theory, and schema
formation principles, EWCCM models comprehension difficulty as a function of both intrinsic
program structure and developer familiarity. The study employs a mixed-method research
design comprising empirical data collection, synthetic data augmentation, simulation
experiments, and comparative analysis with established complexity metrics. Three program
comprehension tasks, varying in structural complexity, were administered to participants with
diverse experience levels. Statistical analyses—including correlation modelling, regression
analysis, ablation studies, and significance testing—demonstrate that programmer experience
is a significant predictor of comprehension accuracy and cognitive load. Results show that
EWCCM achieves stronger alignment with empirical comprehension outcomes (r = 0.97)
compared to traditional metrics and unweighted cognitive models. The synthetic simulations
further validate the metric’s stability and generalizability under expanded familiarity
conditions. The paper contributes (i) a formal mathematical model for experience-weighted
cognitive complexity, (ii) empirical and simulated evidence confirming the role of experience
in cognitive load modulation, and (iii) comparative insights demonstrating EWCCM’s
superiority over existing measures. Practical implications include improved complexity
assessment for software evaluation, personalized code review and learning tools, and pathways
for integrating human factors into automated analysis environments. The study concludes with
limitations, validity considerations, and recommendations for applying EWCCM across
languages, paradigms, and real-world software systems.
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1. Introduction

Understanding software systems is a cognitively demanding activity and remains one of the
most critical determinants of software quality, maintainability, reliability, and developer
productivity. Numerous empirical studies report that developers spend a disproportionate
amount of their time reading, exploring, and mentally reconstructing code between 58% and
70% compared to time spent writing or modifying it. This cognitive burden becomes even
more pronounced as software systems evolve in size, structural intricacy, and architectural
heterogeneity. Consequently, the ability to accurately measure software understandability is
essential for predicting long-term maintenance effort, defect susceptibility, and the overall
sustainability of software systems. Traditional complexity metrics such as McCabe’s
Cyclomatic Complexity and Halstead’s Metrics remain widely adopted due to their simplicity
and historical prevalence. However, these structural metrics provide limited insight into the
human dimension of comprehension. They quantify control-flow or token-level characteristics
but do not capture how real developers process, internalize, and understand program logic. In
response to these limitations, cognitive complexity models emerged, emphasizing mental
operations, control-flow schema, and cognitive load principles. Early cognitive frameworks—
including Wang’s Cognitive Complexity (2007), Misra and Akman (2008), and Chhabra
(2011)—shifted attention toward human comprehension processes by modelling how
developers interpret Basic Control Structures, nesting, abstraction, and spatial relationships
within code.

Despite these advances, a critical gap persists: existing cognitive complexity metrics implicitly
treat all developers as cognitively identical (Fenton, 1997; Gil &Lalouche, 2017). This
assumption overlooks decades of findings in Cognitive Informatics (Wang, 2009), Cognitive
Load Theory (Sweller, 2019), and expertise studies demonstrating that comprehension is
moderated by prior experience, familiarity with programming paradigms, and the richness of
internalized schemas. Experienced developers form more efficient mental models, while
novices require greater effort to interpret similar structures. Failure to account for this
variability limits the accuracy and ecological validity of current complexity measures. To
address this gap, this study introduces the Experience-Weighted Cognitive Complexity Metric
(EWCCM)—a framework that integrates structural cognitive operations with a quantifiable
developer-experience factor. EWCCM operationalizes experience as a cognitive modifier that
adjusts perceived complexity according to prior exposure, conceptual fluency, and
accumulated programming knowledge (ldris et al., 2025). This integration aligns with human-
centric software engineering principles and supports more reliable assessments of code
understandability in real-world development environments.

The contributions of this paper are fourfold. First, it proposes a formal mathematical model for
experience-weighted cognitive complexity grounded in cognitive informatics. Second, it
develops an empirical dataset using comprehension tasks administered across participants with
varying experience levels. Third, it evaluates EWCCM against classical metrics and existing
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cognitive models through statistical analysis, simulations, and synthetic data augmentation.
Finally, it provides insights for practical adoption of the metric in maintainability prediction,
code review optimization, and personalized learning systems.

To guide the investigation, the following research questions are formulated:
> RQL1: To what extent does developer experience influence the cognitive effort required
to understand software code?
» RQ2: How accurately does EWCCM reflect actual comprehension difficulty compared
to traditional structural and cognitive metrics?
» RQ3: Can synthetic simulations and extended datasets validate the generalizability and
stability of the experience-weighted model?

Based on prior theoretical assumptions and empirical evidence, the study proposes the
following hypotheses:
> H1: Developer experience significantly reduces perceived cognitive complexity during
code comprehension.
» H2: EWCCM demonstrates stronger correlation with empirical comprehension
outcomes than unweighted cognitive or structural metrics.
» H3: EWCCM maintains predictive consistency under synthetic and extended
simulation conditions.
This research advances the state of the art by embedding human variability directly into
software complexity computation, enabling more nuanced, realistic, and actionable
assessments of software understandability.

2. Related Work

Research on software complexity has evolved through multiple theoretical and empirical
phases, beginning with structural metrics and gradually incorporating cognitive and human-
centric perspectives. Early foundational work by McCabe (1976) and Halstead (1977)
introduced complexity metrics that quantified control-flow paths and token-level operations.
These models offered mathematical simplicity and became deeply embedded in industry
practice; however, their underlying assumptions treated software comprehension as a purely
structural problem. They did not account for human cognitive processes, developer
background, or the mental effort required to interpret different control structures. To overcome
these limitations, researchers explored cognitive-oriented complexity measures that align more
closely with human information processing. Wang (2007) advanced this paradigm through the
Basic Control Structure (BCS) theory, which decomposes software into well-defined cognitive
units whose interactions reflect the effort required for mental reconstruction. Misra and Akman
(2008) empirically validated key cognitive operations and demonstrated strong correlations
between cognitive complexity and maintainability indicators. Chhabra (2011) expanded the
cognitive framework by incorporating spatial relationships among program elements,
suggesting that variable interactions and data-flow positioning influence comprehension
difficulty. Similarly, Rim and Choe (2007) introduced the Scope Information Complexity
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Number (SICN), emphasizing how variable lifetime and scope transitions impose cognitive
strain.

More recent studies incorporate machine learning and Al-based perspectives to predict
comprehension difficulty. Tiwari et al. (2019) and Amandeep & Sharma (2021) applied neural
models to infer cognitive load from structural and semantic cues in source code. Their findings
highlight the growing recognition that cognitive complexity is multifaceted, involving both
structural and human-centric factors. Despite these innovations, the explicit modelling of
programmer experience remains largely unaddressed. Existing cognitive metrics either assume
uniform cognition or treat experience qualitatively, without embedding it into complexity
computation. Parallel research in empirical software engineering emphasizes the role of
developer expertise in shaping comprehension strategies. Studies such as Ali et al. (2020) and
Bavota (2022) consistently show that experienced developers exhibit higher comprehension
accuracy, form more sophisticated mental models, and navigate control-flow structures more
efficiently. Cognitive Informatics literature reinforces these findings: schema theory and
expertise research demonstrate that prior exposure to programming paradigms significantly
influences the cognitive pathways used during problem solving and code interpretation
(Agrawal et al., 2023; Ben Athiwaratkun et al., 2023).

Additionally, there is increasing evidence that traditional metrics may be overly simplistic
or misaligned with actual comprehension difficulty. Feitelson (2023) critiques the overreliance
on McCabe’s Cyclomatic Complexity (MCC), noting that its widespread use persists more
from historical inertia than empirical validity. Studies evaluating MCC and related metrics
(e.g., Pantiuchina et al., 2018; Scalabrino et al., 2021) reveal weak predictive performance
when compared against human comprehension measures. Furthermore, research on code
smells (e.g., Sharma & Spinellis, 2018) and structural anti-patterns highlights how readability,
architecture, and design quality shape cognitive load beyond what traditional metrics capture.
Complementary work in education and practice also illustrates that software is rarely
developed in isolation; developers frequently integrate new code with existing systems,
libraries, or architectural constraints. Studies by Minelli et al. (2015) and Xia et al. (2018) show
that developers spend most of their time reading and understanding code, with only a small
fraction dedicated to modification. These findings reiterate the necessity for metrics that align
with real-world comprehension behaviour (Politowski. et al. (2020); Levy & Feitelson, 2021).

Some studies have explored assessment and skill competitions to evaluate software
development performance. For instance, Onwudebelu et al. (2013) conducted collegiate
software exhibitions that assessed student programming capabilities across technical and
usability dimensions. While not directly focused on cognitive complexity, such studies
underscore the heterogeneity of developer expertise—supporting the need for metrics sensitive
to experience variations. Quality-oriented frameworks such as SEI CMMI emphasize Software
Quality Assurance (SQA) and Software Quality Management (SQM) as key maturity
indicators. Work by Aregbesola & Onwudebelu (2019; 2011) revealed low implementation
levels of these quality areas in Nigerian software industries, suggesting broader challenges in
aligning process rigor with developer skills and experience. These findings indirectly support
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the need for human-factor integration in software evaluation practices. Collectively, the
literature indicates three key gaps:

i.  Structural metrics inadequately represent human cognitive effort.

ii.  Cognitive metrics, though more aligned with comprehension, still treat all
programmers as cognitively uniform.

iii.  Developer experience remains a missing quantitative factor, despite empirical evidence
of its importance.

This study addresses these gaps through the Experience-Weighted Cognitive Complexity
Metric (EWCCM), which embeds quantifiable experience as a cognitive modifier. EWCCM
complements existing structural and cognitive models while providing a more realistic human-
cantered measure of software comprehension difficulty.

3. Theoretical Framework and Model Foundations

3.1 Cognitive Informatics and Software Comprehension

The theoretical foundation of this study is grounded in Cognitive Informatics, which
investigates the internal mechanisms of human information processing and their interaction
with engineered systems. Cognitive Informatics models software comprehension as a mental
process involving perception, memory, reasoning, and schema construction. When developers
read source code, they do not interpret it linearly; instead, they activate stored cognitive
schemas derived from prior experience, programming paradigms, and domain knowledge.
These schemas significantly reduce the cognitive effort required to understand familiar
structures while amplifying difficulty in unfamiliar contexts. Within this framework, program
comprehension is viewed as a transformation from external symbolic representations (source
code) to internal mental models. The efficiency of this transformation is influenced not only
by structural properties of the code but also by the developer’s prior exposure and conceptual
fluency. This perspective challenges the assumption—implicit in many complexity metrics—
that all programmers perceive code difficulty uniformly.

3.2 Cognitive Load Theory and Expertise Effects

Cognitive Load Theory (CLT) further explains how software complexity interacts with
human cognition. CLT distinguishes between intrinsic load (caused by the inherent complexity
of the task), extraneous load (caused by representation and formatting), and germane load
(associated with schema construction). In code comprehension, intrinsic load is determined by
control flow, nesting, and data dependencies, while germane load is heavily moderated by
programmer experience. Experienced developers rely on well-established schemas to
compress information, effectively reducing working memory demands. Novice programmers,
in contrast, must process code at a more granular level, incurring higher cognitive load even
for structurally identical programs. Therefore, identical code fragments can induce
substantially different comprehension effort depending on the reader’s experience level, an
effect that traditional complexity metrics fail to model.

808

@ © CINEFORUM



CINEFORUM
ISSN : 0009-7039
Vol. 65. No. 4, 2025

3.3 Limitations of Existing Cognitive Complexity Metrics

Early cognitive complexity models, including those based on Basic Control Structures
(BCS), successfully incorporated control flow patterns into complexity estimation. These
models assign weights to constructs such as sequence, iteration, selection, and recursion,
reflecting the mental effort required to comprehend them. While this approach represents a
significant advancement over purely structural metrics, it implicitly assumes a uniform
cognitive interpreter. In practice, however, empirical software engineering studies repeatedly
demonstrate that experience influences comprehension accuracy, time, and error rates. Metrics
that ignore this variability are therefore limited in their predictive power. Without
incorporating experience as a first-class parameter, cognitive complexity measures remain
incomplete representations of real-world comprehension processes.

3.4 Experience-Weighted Cognitive Complexity Metric (EWCCM)

To address this gap, this study introduces the EWCCM. The core idea is to treat developer
experience as a cognitive modifier that adjusts perceived complexity rather than as an external
or qualitative attribute.

Let:

e CC denote the baseline cognitive complexity derived from structural and control-flow
constructs

e Fe denote the experience factor, representing developer familiarity, exposure, and
expertise

e EWCC denote the experience-weighted cognitive complexity

The proposed formulation is expressed as (question (1)):

Ewce =< (1)
Fe

where: Fe >1

Higher values of Fe correspond to greater experience and familiarity, resulting in lower
perceived complexity for the same code structure. Conversely, when experience is minimal
(Fe = 1), EWCC converges to the baseline cognitive complexity. This formulation aligns with
cognitive theory by modelling experience as a compression mechanism that reduces effective
cognitive load. It also preserves compatibility with existing cognitive metrics by using them
as input to the weighting process, enabling backward comparison and integration.

3.5 Research Hypotheses Revisited
Based on this theoretical framework, EWCCM operationalizes the following assumptions:
i.  Cognitive complexity is not solely a property of code but an interaction between code
and the developer.
ii.  Experience moderates working memory demands and schema activation efficiency.
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iii.  Quantitative weighting of experience leads to more accurate and ecologically valid
complexity estimation.
These assumptions directly support the hypotheses defined in Section 1 and provide a
principled foundation for the empirical and simulation analyses presented in subsequent
sections.

4. Research Methodology and Experimental Design
4.1 Research Design
This study adopts a mixed-method empirical research design, combining controlled
empirical experimentation with simulation-based validation. The design integrates quantitative
analysis of program comprehension tasks, synthetic data augmentation, and comparative
metric evaluation. The objective is to assess whether incorporating developer experience into
cognitive complexity modelling significantly improves the alignment between measured
complexity and observed comprehension outcomes. The study proceeds in four phases:
i.  Baseline cognitive complexity computation using established models.
ii.  Experience factor elicitation based on participant background and task familiarity.
iii. EWCCM computation and comparative analysis.
iv.  Simulation and synthetic data extension to evaluate robustness and generalizability.

This multi-phase structure enhances internal validity while enabling scalability beyond the
initial dataset.

4.2 Dataset and Code Snippet Characteristics
Three representative program samples were used as the empirical basis of evaluation (Table
1). The programs were designed to span different structural complexity levels while remaining
semantically comparable.
Table 1. Characteristics of Program Samples

Program LOC Control Nesting Estimated
Structures Depth CC
P1 60 Sequence, Low Low
Selection
P2 115 Iteration, Medium Medium
Selection
P3 180 Nested Iteration, High High
Conditionals

Each program implemented functionally equivalent logic but differed in complexity due to
variation in nesting levels, decision points, and control flow interactions. This design isolates
cognitive effects attributable to structure rather than domain semantics.
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4.3 Participant Selection and Experience Measurement
Participants were drawn from tertiary-level computer science programs and early-career

developers (Table 2). To capture variability in experience, participants were categorized into
three experience levels:

Table 2. Experience Grouping Criteria

Group Experience Description Experience Factor
(Fe)
Novice <I year programming 1.0
experience
Intermediate 2—4 years experience 1.5
Experienced >5 years experience 2.0

The experience factor (Fe) was derived from a composite score based on: (i) Years of
programming experience; (ii) Number of programming languages known; (iii) Prior exposure
to similar programming constructs. This scaling preserves interpretability while ensuring
monotonic influence on EWCCM.

4.4 Experimental Procedure

Participants were presented with the three program samples under controlled conditions.
All participants were provided identical instructions and time limits to minimize procedural
bias. For each program, participants were required to: (i) Read and mentally trace program
logic; (i) Answer comprehension questions testing functional understanding; (iii) ldentify
outputs for given inputs. The following dependent variables were recorded:

a. Comprehension accuracy (%)

b. Time-to-comprehension (seconds)

c. Error count

4.5 Baseline Metrics for Comparison

EWCCM was compared against established metrics to assess relative performance:
a. McCabe’s Cyclomatic Complexity (MCC)

b. Halstead’s Effort Metric

c. Baseline Cognitive Complexity (BCS-based)

4.6 Synthetic Data Generation

Given the limited size of empirical datasets typical in controlled comprehension studies,
synthetic data augmentation was employed to evaluate metric scalability and stability.
Synthetic samples were generated by: varying experience factor values within realistic bounds,
interpolating complexity levels between empirical programs as well as maintaining structural
constraints consistent with real code. Synthetic data allows controlled exploration of edge
cases, reduces sampling bias, and enables sensitivity analysis without introducing unrealistic
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patterns. Such augmentation is common in empirical software engineering and cognitive
modelling studies when human-subject datasets are necessarily limited.

4.7 Statistical Analysis and Evaluation Criteria

The study employs: Pearson correlation analysis to measure alignment between metrics and
comprehension outcomes, regression analysis to assess the explanatory power of experience,
ablation analysis (where the experience factor is removed to observe metric degradation), as
well as confidence intervals and significance testing (o = 0.05). These analyses directly test
the hypotheses defined in Section 1.

4.8 Threats to Validity

To enhance rigor, the following validity threats were considered:
i.  Internal validity: Controlled program semantics and standardized procedures
ii.  Construct validity: Use of multiple comprehension measures

iii.  External validity: Synthetic extension to broader experience distributions

iv.  Conclusion validity: Use of appropriate statistical tests

5. Results and Comparative Analysis

The primary objective of the experimental evaluation is to determine whether integrating
developer experience into cognitive complexity modelling improves the alignment between
measured complexity and actual software comprehension effort. To this end, EWCCM s
evaluated against traditional structural metrics and existing cognitive complexity measures
using both empirical and synthetic datasets. The analysis focuses on comprehension accuracy,
error rate, and cognitive effort indicators.

5.1 Empirical Results on Program Comprehension

Table 3 summarizes participant performance across the three program samples, stratified
by experience level. The results indicate a monotonic improvement in comprehension
outcomes with increasing experience across all program complexities. Notably, differences
between experience groups widen as structural complexity increases, underscoring the
moderating role of experience in cognitive load management.

Table 3. Empirical Comprehension Outcomes

Program | Experience Accuracy | Avg. Time Error
Level (%) (s) Count

P1 Novice 72 215 4

P1 Intermediate 85 162 2

P1 Experienced 93 118 1

P2 Novice 58 294 6

P2 Intermediate 74 221 3

P2 Experience 88 164 1

P3 Novice 41 368 8
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5.2 Metric Computation Results
Table 4 reports complexity values computed using different metrics. While MCC and
Halstead metrics increase linearly with code size and control flow, they remain invariant across
developer profiles. In contrast, EWCCM adapts to experience by reducing perceived
complexity for experienced programmers.
Table 4. Complexity Metric Outputs

Program MCC Halstead Baseline | EWCCM
Effort CC (Exp.)

P1 6 1120 14 7.0

P1 14 3480 29 14.5

P3 26 7920 51 25.5

5.3 Correlation Analysis

Pearson correlation coefficients were computed between metric values and observed
comprehension difficulty (measured via error count and time). From Table 5, EWCCM
exhibits the strongest correlation with all empirical comprehension measures. This statistically
significant improvement (p < 0.01) supports H2, confirming that experience-weighted
modelling better reflects real comprehension effort.

Table 5. Correlation between Metrics and Comprehension Measures

Metric Accuracy (r) | Time(r) Error Count (r)
MCC —0.68 0.71 0.69
Halstead —0.72 0.74 0.73
Baseline CC | —0.86 0.89 0.87
EWCCM —0.97 0.96 0.95

5.4 Ablation Study: Effect of Experience Removal

To assess the impact of experience weighting, an ablation analysis was conducted by setting
the experience factor for all participants. The resulting metric performance reverted to baseline
cognitive complexity behaviour, with correlation coefficients dropping from 0.97 to 0.86. This
degradation highlights the critical contribution of experience weighting to metric performance
and confirms H1, which posits that experience significantly influences cognitive complexity
perception.

5.5 Synthetic Data Simulation Results

Synthetic datasets were generated by expanding the experience factor range and
interpolating intermediate complexity values. Figures 1 to 3 placeholders below correspond to
synthetic trend visualizations.
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Figure 3. Sensitivity analysis of EWCCM under synthetic scaling

Simulation results demonstrate that: (i) EWCCM decreases monotonically with increasing
experience; (i) Structural metrics remain invariant and (iiif) EWCCM exhibits stable behaviour
with no discontinuities. These findings support H3, indicating that EWCCM generalizes
beyond the empirical dataset.

5.6 Comparative Discussion
Traditional metrics capture structural difficulty but fail to explain observed differences in
developer comprehension. Baseline cognitive metrics improve prediction accuracy but remain
incomplete by neglecting human heterogeneity. EWCCM bridges this gap by embedding
experience directly into computation, yielding superior predictive alignment and theoretical
consistency.
These results collectively validate the proposed framework and justify its use in human-
centric software complexity assessment. Thus, the results demonstrate that:
i.  Developer experience significantly moderates perceived code complexity.
ii. EWCCM outperforms traditional and baseline cognitive metrics.
iii.  Synthetic simulations confirm robustness and scalability.

6. Discussion, Threats to Validity, and Practical Implications
6.1 Discussion of Key Findings
This study set out to enhance cognitive complexity modelling by explicitly incorporating
developer experience as a first-class factor. The empirical and simulation results consistently
demonstrate that experience significantly moderates perceived code difficulty. Unlike
traditional complexity metrics, which treat all developers as cognitively equivalent, the
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EWCCM adapts its assessment to reflect real-world differences in comprehension effort. A
notable outcome is the strong correlation between EWCCM values and observed
comprehension indicators such as error rates and task completion time. This finding provides
empirical support for cognitive informatics theory, which posits that human cognitive
characteristics must be explicitly modelled when analysing information-intensive tasks. The
ablation analysis further confirms that removing the experience component substantially
degrades predictive accuracy, reinforcing the necessity of human-cantered modelling.

Importantly, results indicate that increasing code complexity amplifies the divergence in
comprehension effort between novice and experienced developers. This suggests that
experience does not merely reduce absolute difficulty but also enables developers to manage
cognitive load more efficiently under structurally complex conditions.

6.2 Relation to Existing Work

Compared to classical structural metrics such as Cyclomatic Complexity and Halstead
measures, EWCCM provides a more realistic representation of software understandability.
While earlier cognitive metrics advanced the field by acknowledging control flow and
architectural effects, they largely overlooked developer heterogeneity. EWCCM extends these
foundations by operationalizing experience as a quantitative modifier rather than an external
contextual variable. Recent machine learning—based approaches attempt to predict
comprehension difficulty indirectly; however, they often lack interpretability and require large
datasets. In contrast, EWCCM retains analytical transparency, allowing practitioners to reason
about why complexity values change and how experience influences them. This balance
between explainability and empirical accuracy distinguishes EWCCM from black-box
predictive models.

6.3 Threats to Validity

Despite encouraging results, several threats to validity must be considered. Internal validity
may be affected by the limited number of programs used in the empirical study. Although
selected programs span increasing levels of structural complexity, they may not capture all
real-world coding paradigms. Additionally, comprehension performance was measured using
controlled tasks, which may differ from industrial debugging or maintenance scenarios.
Construct validity concerns arise from the operationalization of developer experience.
Experience levels were derived from self-reported years of programming and exposure to
languages, which may not fully represent actual expertise. While synthetic data simulation
mitigates this limitation by exploring a broader range of experience factors, future studies
should incorporate objective measures such as code review history or proficiency tests.
External validity is constrained by the academic and semi-professional nature of participants.
While the results are theoretically grounded, further replication across industrial environments
and domain-specific software systems would strengthen generalizability. Conclusion validity
may be influenced by sample size and statistical assumptions. Nonetheless, strong correlation
coefficients and consistent trends across empirical and synthetic datasets indicate robust
findings.
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6.4 Practical Implications

EWCCM has several implications for both research and software engineering practice. For
project managers, the metric can inform task assignment by aligning code complexity with
developer experience, potentially reducing defects and on-boarding time. For software
educators, EWCCM offers a principled way to select programming exercises that match
student proficiency. For tool developers, the metric can be embedded into static analysis and
IDE-based quality tools to provide personalized complexity feedback. Furthermore, EWCCM
encourages a shift from one-size-fits-all complexity assessment toward adaptive, human-aware
software analytics. Such an approach aligns with modern development practices that
emphasize developer experience, productivity, and sustainable software evolution.

This combined discussion reinforces the central contribution of the study: cognitive
complexity assessment must explicitly account for the human dimension to remain meaningful.
By incorporating experience into complexity computation, EWCCM advances both theoretical
understanding and practical utility. Future research should validate the metric across larger
industrial datasets, explore automated calibration of experience factors, and investigate
integration with empirical defect prediction and maintainability models.

7. Mathematical Model, Research Hypotheses, and Formal Definition of
EWCCM
7.1 Motivation for a Formal Model
Existing software complexity metrics typically rely on structural or syntactic properties of
source code, implicitly assuming homogeneous cognitive capabilities among developers.
However, empirical observations and cognitive informatics theory demonstrate that program
comprehension is mediated by individual experience. Consequently, a formal mathematical
model is required to explicitly integrate experience into complexity computation, thereby
improving explanatory and predictive power.

7.2 Baseline Cognitive Complexity Model

Let a program be composed of Basic Control Structures (BCS), such as sequence, selection,
iteration, and recursion. Following established cognitive complexity theory, the baseline
cognitive complexity CC(P) is defined as (question (2)):

CC(P) =Y'_,Wkx Nk )

Where: Wi represents the cognitive weight associated with the BCS; Nk denotes the number
of occurrences of that structure in. This formulation captures control flow complexity but does
not account for human variability.

7.3 Experience Factor Definition
To address this limitation, an experience factor Fe is introduced. Let be a normalized scalar
reflecting the developer’s programming experience (equation (3)):
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Fe € (0, 1] 3)

where lower values correspond to higher expertise. The factor may be computed as

(equation (4)):
1

Fe = (1+log(1+E)}

(4)
and:
E denotes years of relevant programming experience or an equivalent proficiency score.

This logarithmic formulation captures diminishing cognitive gains with increasing experience.

7.4 Experience-Weighted Cognitive Complexity Metric (EWCCM)
The proposed EWCCM is formally defined as (equation (5)):

EWCCM (P, Fe) = CC(P) x Fe (5)
This formulation ensures that structural complexity is preserved while allowing perceived
complexity to adapt based on the developer’s experience profile.

7.5 Research Hypotheses
Based on the model formulation, the following hypotheses are tested:

H1: Developer experience significantly moderates perceived cognitive complexity
(equation (6)).

6EWCCM
H1: =222 £ 0 (6)

H2: EWCCM exhibits a stronger correlation (r) with comprehension effort than traditional
metrics (equation (7)).

| (EWCCM) | > | (MCC) |, | "(Halstead) | @)

H3: EWCCM remains stable and monotonic across extended experience ranges under
simulation.

7.6 Theoretical Properties
The proposed metric satisfies the following properties:
I.  Monotonicity: increases with increasing structural complexity.
ii.  Experience Sensitivity: decreases as experience increases.
iii.  Scalability: Metric values scale linearly with control structure growth.
iv. Interpretability: Each term has a clear cognitive meaning.
These properties ensure both mathematical robustness and practical relevance.
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7.7 Simulation and Objective Representation

Simulation experiments were conducted by varying across a continuous range while holding
constant. Results demonstrate smooth, monotonic decay in complexity values as experience
increases. Unlike structural metrics, EWCCM adapts dynamically without introducing
instability or discontinuities. This confirms that the proposed metric performs the actual
simulation of the research objective, rather than relying solely on descriptive performance
parameters. By formalizing cognitive complexity as a function of both structural properties
and developer experience, EWCCM provides a mathematically grounded and empirically
justified advancement over existing metrics.

8. Comparative Evaluation and Statistical Significance Analysis

8.1 Evaluation Framework

To rigorously assess the effectiveness of the proposed Experience-Weighted Cognitive
Complexity Metric (EWCCM), a comparative evaluation was conducted against representative
structural and cognitive complexity metrics, namely McCabe’s Cyclomatic Complexity
(MCC), Halstead Effort, and a baseline Cognitive Complexity (CC) model without experience
weighting. The evaluation framework aligns metric outputs with empirical indicators of
comprehension difficulty, including task completion time, comprehension accuracy, and error
frequency. Both empirical and synthetic datasets were considered to ensure robustness and
generalizability.

8.2 Comparative Metrics Analysis
Table 6 presents a consolidated comparison of metric behaviour across increasing program
complexity levels.
Table 6. Comparative Metric Sensitivity

Metric Experience Correlation Adaptivity
Awareness with Accuracy

MCC No Moderate None

Halstead Effort | No Moderate None

Baseline CC Partial High Limited

EWCCM Yes Very High Strong

Traditional metrics remain insensitive to developer experience and therefore fail to explain
observed comprehension variability. EWCCM, in contrast, explicitly adapts complexity
values, resulting in stronger alignment with human performance.

8.3 Statistical Significance Testing

To establish whether improvements offered by EWCCM are statistically meaningful,
correlation coefficients between metric outputs and comprehension indicators were subjected
to significance testing. A paired t-test comparing EWCCM and baseline CC correlations
yielded:
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£(8) = 5.42, p < 0.01 (8)

Similarly, ANOVA analysis across experience groups demonstrated statistically significant
differences in perceived complexity for EWCCM (p < 0.01), whereas MCC showed no
meaningful differentiation. These results confirm that EWCCM provides statistically superior
explanatory power, thereby addressing concerns regarding result significance.

8.4 Comparative Visualization and Trend Analysis

Empirical and synthetic trend analyses consistently show that structural metrics produce flat
or step-wise complexity profiles across experience levels. In contrast, EWCCM generates
smooth, monotonic trends that align closely with empirical comprehension effort. This
behaviour demonstrates that EWCCM not only captures complexity magnitude but also
reflects cognitive adaptability, a dimension absent from traditional metrics. From a data
analytics standpoint, EWCCM improves both predictive accuracy and feature relevance. By
incorporating experience as an explicit variable rather than a latent factor, the model reduces
unexplained variance and enhances interpretability. This positions EWCCM as a suitable
candidate for integration into broader analytics pipelines, such as maintainability assessment,
defect prediction, and developer workload optimization. The comparative and statistical
analyses demonstrate that:

i. EWCCM significantly outperforms existing metrics (Objective 01).
ii.  Experience weighting produces measurable improvements in prediction accuracy
(Objective 02).
iii.  Simulation results meaningfully represent real-world cognitive effects (Objective
03).
Thus, the evaluation confirms that the proposed method meets its stated research objectives.
EWCCM achieves consistent improvements across all evaluation dimensions.

9. Conclusion and Future Work

This paper introduced the Experience-Weighted Cognitive Complexity Metric (EWCCM)
as a human-cantered approach to assessing software complexity and understandability. Unlike
traditional structural or syntax-based metrics, EWCCM explicitly integrates developer
experience into cognitive complexity computation, addressing a long-standing limitation in
software measurement research. Through formal mathematical modelling, empirical
evaluation, synthetic simulation, and comparative statistical analysis, the study demonstrated
that developer experience plays a significant role in moderating perceived code complexity.
Results showed that EWCCM exhibits a substantially stronger correlation with comprehension
indicators—such as accuracy, error rate, and task completion time—than established metrics
including Cyclomatic Complexity and Halstead measures. The ablation analysis further
confirmed that removing the experience component leads to a marked decline in predictive
accuracy, underscoring the necessity of experience-aware modelling. By grounding the
proposed metric in cognitive informatics theory while retaining interpretability and analytical
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transparency, this work bridges the gap between human factors research and practical software
engineering metrics. The findings challenge the implicit assumption of cognitive homogeneity
embedded in many existing metrics and provide empirical justification for adaptive, developer-
aware complexity assessment. The main contributions of this work are threefold:
a. Theoretical Contribution: A formalized cognitive complexity model that explicitly
incorporates developer experience as a quantitative modifier.
b. Methodological Contribution: A rigorous evaluation framework combining empirical
data, synthetic simulation, and statistical significance testing.
c. Practical Contribution: A metric suitable for integration into software quality tools,
educational environments, and project management workflows.
While the results are promising, several avenues for future research remain open.

First, large-scale industrial validation across diverse software domains and organizational
contexts would strengthen the external validity of EWCCM. Incorporating real-world
maintenance tasks, debugging activities, and collaborative development settings could provide
deeper insight into practical applicability. Second, future studies could explore automated
calibration of the experience factor using objective indicators such as commit history, code
review outcomes, or machine-learning-derived proficiency scores. This would reduce reliance
on self-reported experience measures and further enhance construct validity. Third, extending
EWCCM to account for additional human factors such as language familiarity, domain
expertise, and cognitive style, could yield a more comprehensive cognitive complexity
framework. The integration of EWCCM into predictive models for defect proneness and
maintainability also represents a promising research direction. Finally, embedding EWCCM
into IDEs and static analysis tools would enable real-time, personalized complexity feedback,
supporting more sustainable and human-aware software development practices.

This work advances the state of the art in software complexity measurement by reaffirming
that software is written for humans, not just machines. By explicitly modelling human
experience, EWCCM offers a more realistic, reliable, and actionable approach to
understanding software complexity and lays the foundation for future human-centric software
analytics.
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