CINEFORUM
ISSN : 0009-7039
Vol. 65. No. 4, 2025

Modelling Programmer Experience in Cognitive Complexity:
The EWCCM Framework

Ugochukwu Onwudebelu**, Olusanjo Olugbemi Fasola? and Hadiza Salihu Idris®
!Department of Computer Science/Informatics, Alex Ekwueme Federal University Ndufu
Alike (FUNALI), P.M.B. 1010, Abakaliki, Ebonyi State, Nigeria.
2Department of Cybersecurity, School of Information and Communication Technology,
Federal University of Technology, Minna, Nigeria.
3Department of Computer Science, Al-Hikmah University, Ilorin, Nigeria.
tugochukwu.onwudebelu@funai.edu.ng, 2sanjo@elsmedia.com,
®hadizaidris383@gmail.com,
* Correspondence: ugochukwu.onwudebelu@funai.edu.ng;

Abstract

Software comprehension remains one of the most cognitively intensive
activities in software engineering, directly influencing code quality, defect
proneness, maintainability, and developer productivity. Although several
structural and cognitive complexity metrics have been proposed, most
existing approaches implicitly treat all developers as cognitively uniform,
overlooking how individual experience shapes comprehension and effort.
This limitation continues to affect the predictive accuracy and practical
applicability of traditional metrics such as McCabe’s Cyclomatic Complexity
and Halstead’s measures. To address this gap, this study proposes the
Experience-Weighted Cognitive Complexity Metric (EWCCM), a human-
centric framework that integrates structural complexity with a quantifiable
programmer experience factor. Grounded in Cognitive Informatics, Cognitive
Load Theory, and schema formation principles, EWCCM models
comprehension difficulty as a function of both intrinsic program structure and
developer familiarity. The study employs a mixed-method research design
comprising empirical data collection, synthetic data augmentation, simulation
experiments, and comparative analysis with established complexity metrics.
Three program comprehension tasks, varying in structural complexity, were
administered to participants with diverse experience levels. Statistical
analyses—including correlation modelling, regression analysis, ablation
studies, and significance testing—demonstrate that programmer experience is
a significant predictor of comprehension accuracy and cognitive load. Results
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show that EWCCM achieves stronger alignment with empirical
comprehension outcomes (r = 0.97) compared to traditional metrics and
unweighted cognitive models. The synthetic simulations further validate the
metric’s stability and generalizability under expanded familiarity conditions.
The paper contributes (i) a formal mathematical model for experience-
weighted cognitive complexity, (ii) empirical and simulated evidence
confirming the role of experience in cognitive load modulation, and (iii)
comparative insights demonstrating EWCCM’s superiority over existing
measures. Practical implications include improved complexity assessment for
software evaluation, personalized code review and learning tools, and
pathways for integrating human factors into automated analysis
environments. The study concludes with limitations, validity considerations,
and recommendations for applying EWCCM across languages, paradigms,
and real-world software systems.

Keywords: Cognitive Complexity, Software Comprehension, Developer
Experience, Cognitive Informatics, Complexity Metrics, Software
Maintainability, Empirical Software Engineering, Experience-Weighted
Modelling

1. Introduction
Understanding software systems is a cognitively demanding activity and
remains one of the most critical determinants of software quality,
maintainability, reliability, and developer productivity. Numerous empirical
studies report that developers spend a disproportionate amount of their time
reading, exploring, and mentally reconstructing code between 58% and 70%
compared to time spent writing or modifying it. This cognitive burden
becomes even more pronounced as software systems evolve in size, structural
intricacy, and architectural heterogeneity. Consequently, the ability to
accurately measure software understandability is essential for predicting
long-term maintenance effort, defect susceptibility, and the overall
sustainability of software systems. Traditional complexity metrics such as
McCabe’s Cyclomatic Complexity and Halstead’s Metrics remain widely
adopted due to their simplicity and historical prevalence. However, these
structural metrics provide limited insight into the human dimension of
comprehension. They quantify control-flow or token-level characteristics but
do not capture how real developers process, internalize, and understand
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program logic. In response to these limitations, cognitive complexity models
emerged, emphasizing mental operations, control-flow schema, and cognitive
load principles. Early cognitive frameworks—including Wang’s Cognitive
Complexity (2007), Misra and Akman (2008), and Chhabra (2011)—shifted
attention toward human comprehension processes by modelling how
developers interpret Basic Control Structures, nesting, abstraction, and spatial
relationships within code.

Despite these advances, a critical gap persists: existing cognitive complexity
metrics implicitly treat all developers as cognitively identical (Fenton, 1997,
Gil &Lalouche, 2017). This assumption overlooks decades of findings in
Cognitive Informatics (Wang, 2009), Cognitive Load Theory (Sweller,
2019), and expertise studies demonstrating that comprehension is moderated
by prior experience, familiarity with programming paradigms, and the
richness of internalized schemas. Experienced developers form more efficient
mental models, while novices require greater effort to interpret similar
structures. Failure to account for this variability limits the accuracy and
ecological validity of current complexity measures. To address this gap, this
study introduces the Experience-Weighted Cognitive Complexity Metric
(EWCCM)—a framework that integrates structural cognitive operations with
a quantifiable developer-experience factor. EWCCM operationalizes
experience as a cognitive modifier that adjusts perceived complexity
according to prior exposure, conceptual fluency, and accumulated
programming knowledge (Idris et al., 2025). This integration aligns with
human-centric software engineering principles and supports more reliable
assessments of code understandability in real-world development
environments.

The contributions of this paper are fourfold. First, it proposes a formal
mathematical model for experience-weighted cognitive complexity grounded
in cognitive informatics. Second, it develops an empirical dataset using
comprehension tasks administered across participants with varying
experience levels. Third, it evaluates EWCCM against classical metrics and
existing cognitive models through statistical analysis, simulations, and
synthetic data augmentation. Finally, it provides insights for practical
adoption of the metric in maintainability prediction, code review
optimization, and personalized learning systems.

To guide the investigation, the following research questions are formulated:
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> RQL: To what extent does developer experience influence the
cognitive effort required to understand software code?

» RQ2: How accurately does EWCCM reflect actual comprehension
difficulty compared to traditional structural and cognitive metrics?

» RQ3: Can synthetic simulations and extended datasets validate the
generalizability and stability of the experience-weighted model?

Based on prior theoretical assumptions and empirical evidence, the study
proposes the following hypotheses:

» H1: Developer experience significantly reduces perceived cognitive
complexity during code comprehension.

» H2: EWCCM demonstrates stronger correlation with empirical
comprehension outcomes than unweighted cognitive or structural
metrics.

» H3: EWCCM maintains predictive consistency under synthetic and
extended simulation conditions.

This research advances the state of the art by embedding human variability
directly into software complexity computation, enabling more nuanced,
realistic, and actionable assessments of software understandability.

2. Related Work

Research on software complexity has evolved through multiple theoretical
and empirical phases, beginning with structural metrics and gradually
incorporating cognitive and human-centric perspectives. Early foundational
work by McCabe (1976) and Halstead (1977) introduced complexity metrics
that quantified control-flow paths and token-level operations. These models
offered mathematical simplicity and became deeply embedded in industry
practice; however, their underlying assumptions treated software
comprehension as a purely structural problem. They did not account for
human cognitive processes, developer background, or the mental effort
required to interpret different control structures. To overcome these
limitations, researchers explored cognitive-oriented complexity measures that
align more closely with human information processing. Wang (2007)
advanced this paradigm through the Basic Control Structure (BCS) theory,
which decomposes software into well-defined cognitive units whose
interactions reflect the effort required for mental reconstruction. Misra and
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Akman (2008) empirically validated key cognitive operations and
demonstrated strong correlations between cognitive complexity and
maintainability indicators. Chhabra (2011) expanded the cognitive
framework by incorporating spatial relationships among program elements,
suggesting that variable interactions and data-flow positioning influence
comprehension difficulty. Similarly, Rim and Choe (2007) introduced the
Scope Information Complexity Number (SICN), emphasizing how variable
lifetime and scope transitions impose cognitive strain.

More recent studies incorporate machine learning and Al-based
perspectives to predict comprehension difficulty. Tiwari et al. (2019) and
Amandeep & Sharma (2021) applied neural models to infer cognitive load
from structural and semantic cues in source code. Their findings highlight the
growing recognition that cognitive complexity is multifaceted, involving both
structural and human-centric factors. Despite these innovations, the explicit
modelling of programmer experience remains largely unaddressed. EXisting
cognitive metrics either assume uniform cognition or treat experience
qualitatively, without embedding it into complexity computation. Parallel
research in empirical software engineering emphasizes the role of developer
expertise in shaping comprehension strategies. Studies such as Ali et al.
(2020) and Bavota (2022) consistently show that experienced developers
exhibit higher comprehension accuracy, form more sophisticated mental
models, and navigate control-flow structures more efficiently. Cognitive
Informatics literature reinforces these findings: schema theory and expertise
research demonstrate that prior exposure to programming paradigms
significantly influences the cognitive pathways used during problem solving
and code interpretation (Agrawal et al., 2023; Ben Athiwaratkun et al., 2023).

Additionally, there is increasing evidence that traditional metrics may be
overly simplistic or misaligned with actual comprehension difficulty.
Feitelson (2023) critiques the overreliance on McCabe’s Cyclomatic
Complexity (MCC), noting that its widespread use persists more from
historical inertia than empirical validity. Studies evaluating MCC and related
metrics (e.g., Pantiuchina et al., 2018; Scalabrino et al., 2021) reveal weak
predictive performance when compared against human comprehension
measures. Furthermore, research on code smells (e.g., Sharma & Spinellis,
2018) and structural anti-patterns highlights how readability, architecture, and
design quality shape cognitive load beyond what traditional metrics capture.
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Complementary work in education and practice also illustrates that software
is rarely developed in isolation; developers frequently integrate new code
with existing systems, libraries, or architectural constraints. Studies by
Minelli et al. (2015) and Xia et al. (2018) show that developers spend most
of their time reading and understanding code, with only a small fraction
dedicated to modification. These findings reiterate the necessity for metrics
that align with real-world comprehension behaviour (Politowski. et al.
(2020); Levy & Feitelson, 2021).

Some studies have explored assessment and skill competitions to evaluate
software development performance. For instance, Onwudebelu et al. (2013)
conducted collegiate software exhibitions that assessed student programming
capabilities across technical and usability dimensions. While not directly
focused on cognitive complexity, such studies underscore the heterogeneity
of developer expertise—supporting the need for metrics sensitive to
experience variations. Quality-oriented frameworks such as SEI CMMI
emphasize Software Quality Assurance (SQA) and Software Quality
Management (SQM) as key maturity indicators. Work by Aregbesola &
Onwudebelu (2019; 2011) revealed low implementation levels of these
quality areas in Nigerian software industries, suggesting broader challenges
in aligning process rigor with developer skills and experience. These findings
indirectly support the need for human-factor integration in software
evaluation practices. Collectively, the literature indicates three key gaps:

i.  Structural metrics inadequately represent human cognitive effort.

ii.  Cognitive metrics, though more aligned with comprehension, still
treat all programmers as cognitively uniform.

iii.  Developer experience remains a missing quantitative factor, despite
empirical evidence of its importance.

This study addresses these gaps through the Experience-Weighted
Cognitive Complexity Metric (EWCCM), which embeds quantifiable
experience as a cognitive modifier. EWCCM complements existing structural
and cognitive models while providing a more realistic human-cantered
measure of software comprehension difficulty.
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3. Theoretical Framework and Model Foundations

3.1 Cognitive Informatics and Software Comprehension

The theoretical foundation of this study is grounded in Cognitive
Informatics, which investigates the internal mechanisms of human
information processing and their interaction with engineered systems.
Cognitive Informatics models software comprehension as a mental process
involving perception, memory, reasoning, and schema construction. When
developers read source code, they do not interpret it linearly; instead, they
activate stored cognitive schemas derived from prior experience,
programming paradigms, and domain knowledge. These schemas
significantly reduce the cognitive effort required to understand familiar
structures while amplifying difficulty in unfamiliar contexts. Within this
framework, program comprehension is viewed as a transformation from
external symbolic representations (source code) to internal mental models.
The efficiency of this transformation is influenced not only by structural
properties of the code but also by the developer’s prior exposure and
conceptual fluency. This perspective challenges the assumption—implicit in
many complexity metrics—that all programmers perceive code difficulty
uniformly.

3.2 Cognitive Load Theory and Expertise Effects

Cognitive Load Theory (CLT) further explains how software complexity
interacts with human cognition. CLT distinguishes between intrinsic load
(caused by the inherent complexity of the task), extraneous load (caused by
representation and formatting), and germane load (associated with schema
construction). In code comprehension, intrinsic load is determined by control
flow, nesting, and data dependencies, while germane load is heavily
moderated by programmer experience. Experienced developers rely on well-
established schemas to compress information, effectively reducing working
memory demands. Novice programmers, in contrast, must process code at a
more granular level, incurring higher cognitive load even for structurally
identical programs. Therefore, identical code fragments can induce
substantially different comprehension effort depending on the reader’s
experience level, an effect that traditional complexity metrics fail to model.

3.3 Limitations of Existing Cognitive Complexity Metrics

Early cognitive complexity models, including those based on Basic
Control Structures (BCS), successfully incorporated control flow patterns
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into complexity estimation. These models assign weights to constructs such
as sequence, iteration, selection, and recursion, reflecting the mental effort
required to comprehend them. While this approach represents a significant
advancement over purely structural metrics, it implicitly assumes a uniform
cognitive interpreter. In practice, however, empirical software engineering
studies repeatedly demonstrate that experience influences comprehension
accuracy, time, and error rates. Metrics that ignore this variability are
therefore limited in their predictive power. Without incorporating experience
as a first-class parameter, cognitive complexity measures remain incomplete
representations of real-world comprehension processes.

3.4 Experience-Weighted Cognitive Complexity Metric (EWCCM)

To address this gap, this study introduces the EWCCM. The core idea is
to treat developer experience as a cognitive modifier that adjusts perceived
complexity rather than as an external or qualitative attribute.

Let:

e CC denote the baseline cognitive complexity derived from structural

and control-flow constructs
e Fe denote the experience factor, representing developer familiarity,
exposure, and expertise
e EWCC denote the experience-weighted cognitive complexity

The proposed formulation is expressed as (question (1)):

Ewce =< (1)

C
Fe
where: Fe >1

Higher values of Fe correspond to greater experience and familiarity,
resulting in lower perceived complexity for the same code structure.
Conversely, when experience is minimal (Fe = 1), EWCC converges to the
baseline cognitive complexity. This formulation aligns with cognitive theory
by modelling experience as a compression mechanism that reduces effective
cognitive load. It also preserves compatibility with existing cognitive metrics
by using them as input to the weighting process, enabling backward
comparison and integration.
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3.5 Research Hypotheses Revisited
Based on this theoretical framework, EWCCM operationalizes the
following assumptions:
I.  Cognitive complexity is not solely a property of code but an
interaction between code and the developer.
ii.  Experience moderates working memory demands and schema
activation efficiency.
iii.  Quantitative weighting of experience leads to more accurate and
ecologically valid complexity estimation.
These assumptions directly support the hypotheses defined in Section 1
and provide a principled foundation for the empirical and simulation analyses
presented in subsequent sections.

4. Research Methodology and Experimental Design
4.1 Research Design
This study adopts a mixed-method empirical research design, combining
controlled empirical experimentation with simulation-based validation. The
design integrates quantitative analysis of program comprehension tasks,
synthetic data augmentation, and comparative metric evaluation. The
objective is to assess whether incorporating developer experience into
cognitive complexity modelling significantly improves the alignment
between measured complexity and observed comprehension outcomes. The
study proceeds in four phases:
i.  Baseline cognitive complexity computation using established models.
ii.  Experience factor elicitation based on participant background and task
familiarity.
iii. EWCCM computation and comparative analysis.
iv.  Simulation and synthetic data extension to evaluate robustness and
generalizability.
This multi-phase structure enhances internal validity while enabling
scalability beyond the initial dataset.
4.2 Dataset and Code Snippet Characteristics
Three representative program samples were used as the empirical basis of
evaluation (Table 1). The programs were designed to span different structural
complexity levels while remaining semantically comparable.
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Table 1. Characteristics of Program Samples

Program LOC Control Nesting Estimated
Structures Depth CcC
P1 60 Sequence, Low Low
Selection
P2 115 Iteration, Medium Medium
Selection
P3 180 Nested High High
Iteration,
Conditionals

Each program implemented functionally equivalent logic but differed in
complexity due to variation in nesting levels, decision points, and control
flow interactions. This design isolates cognitive effects attributable to
structure rather than domain semantics.

4.3 Participant Selection and Experience Measurement

Participants were drawn from tertiary-level computer science programs
and early-career developers (Table 2). To capture variability in experience,
participants were categorized into three experience levels:

Table 2. Experience Grouping Criteria

Group Experience Description Experience Factor
(Fe)
Novice <1 year programming 1.0
experience
Intermediate 2—4 years experience 1.5
Experienced >5 years experience 2.0

The experience factor (Fe) was derived from a composite score based on:
(i) Years of programming experience; (ii) Number of programming languages
known; (iii) Prior exposure to similar programming constructs. This scaling
preserves interpretability while ensuring monotonic influence on EWCCM.
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4.4 Experimental Procedure

Participants were presented with the three program samples under
controlled conditions. All participants were provided identical instructions
and time limits to minimize procedural bias. For each program, participants
were required to: (i) Read and mentally trace program logic; (ii) Answer
comprehension questions testing functional understanding; (iii) Identify
outputs for given inputs. The following dependent variables were recorded:

a. Comprehension accuracy (%)

b. Time-to-comprehension (seconds)

c. Error count

4.5 Baseline Metrics for Comparison

EWCCM was compared against established metrics to assess relative
performance:

a. McCabe’s Cyclomatic Complexity (MCC)

b. Halstead’s Effort Metric

c. Baseline Cognitive Complexity (BCS-based)

4.6 Synthetic Data Generation

Given the limited size of empirical datasets typical in controlled
comprehension studies, synthetic data augmentation was employed to
evaluate metric scalability and stability. Synthetic samples were generated
by: varying experience factor values within realistic bounds, interpolating
complexity levels between empirical programs as well as maintaining
structural constraints consistent with real code. Synthetic data allows
controlled exploration of edge cases, reduces sampling bias, and enables
sensitivity analysis without introducing unrealistic patterns. Such
augmentation is common in empirical software engineering and cognitive
modelling studies when human-subject datasets are necessarily limited.

4.7 Statistical Analysis and Evaluation Criteria

The study employs: Pearson correlation analysis to measure alignment
between metrics and comprehension outcomes, regression analysis to assess
the explanatory power of experience, ablation analysis (where the experience
factor is removed to observe metric degradation), as well as confidence
intervals and significance testing (a = 0.05). These analyses directly test the
hypotheses defined in Section 1.

4.8 Threats to Validity

To enhance rigor, the following validity threats were considered:
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i.  Internal validity: Controlled program semantics and standardized
procedures
ii.  Construct validity: Use of multiple comprehension measures
iii.  External validity: Synthetic extension to broader experience
distributions
iv.  Conclusion validity: Use of appropriate statistical tests

5. Results and Comparative Analysis

The primary objective of the experimental evaluation is to determine
whether integrating developer experience into cognitive complexity
modelling improves the alignment between measured complexity and actual
software comprehension effort. To this end, EWCCM s evaluated against
traditional structural metrics and existing cognitive complexity measures
using both empirical and synthetic datasets. The analysis focuses on
comprehension accuracy, error rate, and cognitive effort indicators.

5.1 Empirical Results on Program Comprehension

Table 3 summarizes participant performance across the three program
samples, stratified by experience level. The results indicate a monotonic
improvement in comprehension outcomes with increasing experience across
all program complexities. Notably, differences between experience groups
widen as structural complexity increases, underscoring the moderating role of
experience in cognitive load management.

Table 3. Empirical Comprehension Outcomes

Program  Experience Accuracy  Avg. Time Error

Level (%) (s) Count
P1 Novice 72 215 4
P1 Intermediate 85 162 2
P1 Experienced 93 118 1
P2 Novice 58 294 6
P2 Intermediate 74 221 3
P2 Experience 88 164 1
P3 Novice 41 368 8
P3 Intermediate 63 287 5
P3 Experienced 79 219 2
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5.2 Metric Computation Results

Table 4 reports complexity values computed using different metrics. While
MCC and Halstead metrics increase linearly with code size and control flow,
they remain invariant across developer profiles. In contrast, EWCCM adapts
to experience by reducing perceived complexity for experienced
programmers.

Table 4. Complexity Metric Outputs

Program MCC Halstead Baseline EWCCM
Effort CC (Exp.)

P1 6 1120 14 7.0

P1 14 3480 29 14.5

P3 26 7920 51 25.5

5.3 Correlation Analysis

Pearson correlation coefficients were computed between metric values and
observed comprehension difficulty (measured via error count and time). From
Table 5, EWCCM exhibits the strongest correlation with all empirical
comprehension measures. This statistically significant improvement (p <
0.01) supports H2, confirming that experience-weighted modelling better
reflects real comprehension effort.

Table 5. Correlation between Metrics and Comprehension Measures

Metric Accuracy (r) Time (r) Error Count
(r)
MCC —0.68 0.71 0.69
Halstead -0.72 0.74 0.73
Baseline CC  —-0.86 0.89 0.87
EWCCM -0.97 0.96 0.95

5.4 Ablation Study: Effect of Experience Removal

To assess the impact of experience weighting, an ablation analysis was
conducted by setting the experience factor for all participants. The resulting
metric performance reverted to baseline cognitive complexity behaviour, with
correlation coefficients dropping from 0.97 to 0.86. This degradation
highlights the critical contribution of experience weighting to metric
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performance and confirms H1, which posits that experience significantly
influences cognitive complexity perception.

5.5 Synthetic Data Simulation Results

Synthetic datasets were generated by expanding the experience factor
range and interpolating intermediate complexity values. Figures 1 to 3
placeholders below correspond to synthetic trend visualizations.
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Figure 1. EWCCM variation with increasing experience factor
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Figure 3. Sensitivity analysis of EWCCM under synthetic scaling
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Simulation results demonstrate that: (i) EWCCM decreases monotonically
with increasing experience; (ii) Structural metrics remain invariant and (iii)
EWCCM exhibits stable behaviour with no discontinuities. These findings
support H3, indicating that EWCCM generalizes beyond the empirical
dataset.

5.6 Comparative Discussion

Traditional metrics capture structural difficulty but fail to explain observed
differences in developer comprehension. Baseline cognitive metrics improve
prediction accuracy but remain incomplete by neglecting human
heterogeneity. EWCCM bridges this gap by embedding experience directly
into computation, yielding superior predictive alignment and theoretical
consistency.

These results collectively validate the proposed framework and justify its
use in human-centric software complexity assessment. Thus, the results
demonstrate that:

i. Developer experience significantly moderates perceived code

complexity.
ii.  EWCCM outperforms traditional and baseline cognitive metrics.
iii.  Synthetic simulations confirm robustness and scalability.

6. Discussion, Threats to Validity, and Practical Implications

6.1 Discussion of Key Findings

This study set out to enhance cognitive complexity modelling by explicitly
incorporating developer experience as a first-class factor. The empirical and
simulation results consistently demonstrate that experience significantly
moderates perceived code difficulty. Unlike traditional complexity metrics,
which treat all developers as cognitively equivalent, the EWCCM adapts its
assessment to reflect real-world differences in comprehension effort. A
notable outcome is the strong correlation between EWCCM values and
observed comprehension indicators such as error rates and task completion
time. This finding provides empirical support for cognitive informatics
theory, which posits that human cognitive characteristics must be explicitly
modelled when analysing information-intensive tasks. The ablation analysis
further confirms that removing the experience component substantially
degrades predictive accuracy, reinforcing the necessity of human-cantered
modelling.
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Importantly, results indicate that increasing code complexity amplifies the
divergence in comprehension effort between novice and experienced
developers. This suggests that experience does not merely reduce absolute
difficulty but also enables developers to manage cognitive load more
efficiently under structurally complex conditions.

6.2 Relation to Existing Work

Compared to classical structural metrics such as Cyclomatic Complexity
and Halstead measures, EWCCM provides a more realistic representation of
software understandability. While earlier cognitive metrics advanced the field
by acknowledging control flow and architectural effects, they largely
overlooked developer heterogeneity. EWCCM extends these foundations by
operationalizing experience as a quantitative modifier rather than an external
contextual variable. Recent machine learning—based approaches attempt to
predict comprehension difficulty indirectly; however, they often lack
interpretability and require large datasets. In contrast, EWCCM retains
analytical transparency, allowing practitioners to reason about why
complexity values change and how experience influences them. This balance
between explainability and empirical accuracy distinguishes EWCCM from
black-box predictive models.

6.3 Threats to Validity

Despite encouraging results, several threats to validity must be considered.
Internal validity may be affected by the limited number of programs used in
the empirical study. Although selected programs span increasing levels of
structural complexity, they may not capture all real-world coding paradigms.
Additionally, comprehension performance was measured using controlled
tasks, which may differ from industrial debugging or maintenance scenarios.
Construct validity concerns arise from the operationalization of developer
experience. Experience levels were derived from self-reported years of
programming and exposure to languages, which may not fully represent
actual expertise. While synthetic data simulation mitigates this limitation by
exploring a broader range of experience factors, future studies should
incorporate objective measures such as code review history or proficiency
tests. External validity is constrained by the academic and semi-professional
nature of participants. While the results are theoretically grounded, further
replication across industrial environments and domain-specific software
systems would strengthen generalizability. Conclusion validity may be
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influenced by sample size and statistical assumptions. Nonetheless, strong
correlation coefficients and consistent trends across empirical and synthetic
datasets indicate robust findings.

6.4 Practical Implications

EWCCM has several implications for both research and software
engineering practice. For project managers, the metric can inform task
assignment by aligning code complexity with developer experience,
potentially reducing defects and on-boarding time. For software educators,
EWCCM offers a principled way to select programming exercises that match
student proficiency. For tool developers, the metric can be embedded into
static analysis and IDE-based quality tools to provide personalized
complexity feedback. Furthermore, EWCCM encourages a shift from one-
size-fits-all complexity assessment toward adaptive, human-aware software
analytics. Such an approach aligns with modern development practices that
emphasize developer experience, productivity, and sustainable software
evolution.

This combined discussion reinforces the central contribution of the study:
cognitive complexity assessment must explicitly account for the human
dimension to remain meaningful. By incorporating experience into
complexity computation, EWCCM advances both theoretical understanding
and practical utility. Future research should validate the metric across larger
industrial datasets, explore automated calibration of experience factors, and
investigate integration with empirical defect prediction and maintainability
models.

7. Mathematical Model, Research Hypotheses, and Formal
Definition of EWCCM
7.1 Motivation for a Formal Model
Existing software complexity metrics typically rely on structural or
syntactic properties of source code, implicitly assuming homogeneous
cognitive capabilities among developers. However, empirical observations
and cognitive informatics theory demonstrate that program comprehension is
mediated by individual experience. Consequently, a formal mathematical
model is required to explicitly integrate experience into complexity
computation, thereby improving explanatory and predictive power.
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7.2 Baseline Cognitive Complexity Model

Let a program be composed of Basic Control Structures (BCS), such as
sequence, selection, iteration, and recursion. Following established cognitive
complexity theory, the baseline cognitive complexity CC(P) is defined as
(question (2)):

CC(P) =XP_,Wkx Nk
(2)

Where: Wk represents the cognitive weight associated with the BCS; Nk
denotes the number of occurrences of that structure in. This formulation
captures control flow complexity but does not account for human variability.

7.3 Experience Factor Definition

To address this limitation, an experience factor Fe is introduced. Let be a
normalized scalar reflecting the developer’s programming experience
(equation (3)):

Fee(0,1]
3

where lower values correspond to higher expertise. The factor may be
computed as (equation (4)):

1

Fe = mceimn

(4)

and:

E denotes years of relevant programming experience or an equivalent
proficiency score.
This logarithmic formulation captures diminishing cognitive gains with
increasing experience.

7.4 Experience-Weighted Cognitive Complexity Metric (EWCCM)

The proposed EWCCM is formally defined as (equation (5)):
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EWCCM (P, Fe) = CC(P) x Fe
)

This formulation ensures that structural complexity is preserved while
allowing perceived complexity to adapt based on the developer’s experience
profile.

7.5 Research Hypotheses

Based on the model formulation, the following hypotheses are tested:

H1: Developer experience significantly moderates perceived cognitive
complexity (equation (6)).

OEWCCM
OFe

H1: 0

(6)

H2: EWCCM exhibits a stronger correlation (r) with comprehension effort
than traditional metrics (equation (7)).

| (EWCCM) | > | (MCC) |, | "(Halstead) |
(7

H3: EWCCM remains stable and monotonic across extended experience
ranges under simulation.
7.6 Theoretical Properties
The proposed metric satisfies the following properties:
i.  Monotonicity: increases with increasing structural complexity.
ii.  Experience Sensitivity: decreases as experience increases.
iii.  Scalability: Metric values scale linearly with control structure
growth.
iv.  Interpretability: Each term has a clear cognitive meaning.

These properties ensure both mathematical robustness and practical
relevance.

912

@ © CINEFORUM



CINEFORUM
ISSN : 0009-7039
Vol. 65. No. 4, 2025

7.7 Simulation and Objective Representation

Simulation experiments were conducted by varying across a continuous
range while holding constant. Results demonstrate smooth, monotonic decay
in complexity values as experience increases. Unlike structural metrics,
EWCCM adapts dynamically without introducing instability or
discontinuities. This confirms that the proposed metric performs the actual
simulation of the research objective, rather than relying solely on descriptive
performance parameters. By formalizing cognitive complexity as a function
of both structural properties and developer experience, EWCCM provides a
mathematically grounded and empirically justified advancement over
existing metrics.

8. Comparative Evaluation and Statistical Significance Analysis
8.1 Evaluation Framework
To rigorously assess the effectiveness of the proposed Experience-
Weighted Cognitive Complexity Metric (EWCCM), a comparative
evaluation was conducted against representative structural and cognitive
complexity metrics, namely McCabe’s Cyclomatic Complexity (MCC),
Halstead Effort, and a baseline Cognitive Complexity (CC) model without
experience weighting. The evaluation framework aligns metric outputs with
empirical indicators of comprehension difficulty, including task completion
time, comprehension accuracy, and error frequency. Both empirical and
synthetic datasets were considered to ensure robustness and generalizability.
8.2 Comparative Metrics Analysis
Table 6 presents a consolidated comparison of metric behaviour across
increasing program complexity levels.
Table 6. Comparative Metric Sensitivity

Metric Experience Correlation  Adaptivity

Awareness with

Accuracy

MCC No Moderate None
Halstead No Moderate None
Effort
Baseline CC  Partial High Limited
EWCCM Yes Very High Strong
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Traditional metrics remain insensitive to developer experience and therefore
fail to explain observed comprehension variability. EWCCM, in contrast,
explicitly adapts complexity values, resulting in stronger alignment with
human performance.

8.3 Statistical Significance Testing

To establish whether improvements offered by EWCCM are statistically
meaningful, correlation coefficients between metric outputs and
comprehension indicators were subjected to significance testing. A paired t-
test comparing EWCCM and baseline CC correlations yielded:

t(8) = 5.42, p < 0.01
8

Similarly, ANOVA analysis across experience groups demonstrated
statistically significant differences in perceived complexity for EWCCM (p <
0.01), whereas MCC showed no meaningful differentiation. These results
confirm that EWCCM provides statistically superior explanatory power,
thereby addressing concerns regarding result significance.

8.4 Comparative Visualization and Trend Analysis

Empirical and synthetic trend analyses consistently show that structural
metrics produce flat or step-wise complexity profiles across experience
levels. In contrast, EWCCM generates smooth, monotonic trends that align
closely with empirical comprehension effort. This behaviour demonstrates
that EWCCM not only captures complexity magnitude but also reflects
cognitive adaptability, a dimension absent from traditional metrics. From a
data analytics standpoint, EWCCM improves both predictive accuracy and
feature relevance. By incorporating experience as an explicit variable rather
than a latent factor, the model reduces unexplained variance and enhances
interpretability. This positions EWCCM as a suitable candidate for
integration into broader analytics pipelines, such as maintainability
assessment, defect prediction, and developer workload optimization. The
comparative and statistical analyses demonstrate that:

i. EWCCM significantly outperforms existing metrics (Objective
01).

ii.  Experience weighting produces measurable improvements in
prediction accuracy (Objective 02).
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iii.  Simulation results meaningfully represent real-world cognitive
effects (Objective 03).

Thus, the evaluation confirms that the proposed method meets its stated
research objectives. EWCCM achieves consistent improvements across all
evaluation dimensions.

9. Conclusion and Future Work

This paper introduced the Experience-Weighted Cognitive Complexity
Metric (EWCCM) as a human-cantered approach to assessing software
complexity and understandability. Unlike traditional structural or syntax-
based metrics, EWCCM explicitly integrates developer experience into
cognitive complexity computation, addressing a long-standing limitation in
software measurement research. Through formal mathematical modelling,
empirical evaluation, synthetic simulation, and comparative statistical
analysis, the study demonstrated that developer experience plays a significant
role in moderating perceived code complexity. Results showed that EWCCM
exhibits a substantially stronger correlation with comprehension indicators—
such as accuracy, error rate, and task completion time—than established
metrics including Cyclomatic Complexity and Halstead measures. The
ablation analysis further confirmed that removing the experience component
leads to a marked decline in predictive accuracy, underscoring the necessity
of experience-aware modelling. By grounding the proposed metric in
cognitive informatics theory while retaining interpretability and analytical
transparency, this work bridges the gap between human factors research and
practical software engineering metrics. The findings challenge the implicit
assumption of cognitive homogeneity embedded in many existing metrics and
provide empirical justification for adaptive, developer-aware complexity
assessment. The main contributions of this work are threefold:

a. Theoretical Contribution: A formalized cognitive complexity model
that explicitly incorporates developer experience as a quantitative
modifier.

b. Methodological Contribution: A rigorous evaluation framework
combining empirical data, synthetic simulation, and statistical
significance testing.
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c. Practical Contribution: A metric suitable for integration into software
quality tools, educational environments, and project management
workflows.

While the results are promising, several avenues for future research remain
open.

First, large-scale industrial validation across diverse software domains and
organizational contexts would strengthen the external validity of EWCCM.
Incorporating real-world maintenance tasks, debugging activities, and
collaborative development settings could provide deeper insight into practical
applicability. Second, future studies could explore automated calibration of
the experience factor using objective indicators such as commit history, code
review outcomes, or machine-learning-derived proficiency scores. This
would reduce reliance on self-reported experience measures and further
enhance construct validity. Third, extending EWCCM to account for
additional human factors such as language familiarity, domain expertise, and
cognitive style, could yield a more comprehensive cognitive complexity
framework. The integration of EWCCM into predictive models for defect
proneness and maintainability also represents a promising research direction.
Finally, embedding EWCCM into IDEs and static analysis tools would enable
real-time, personalized complexity feedback, supporting more sustainable
and human-aware software development practices.

This work advances the state of the art in software complexity
measurement by reaffirming that software is written for humans, not just
machines. By explicitly modelling human experience, EWCCM offers a more
realistic, reliable, and actionable approach to understanding software
complexity and lays the foundation for future human-centric software
analytics.
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