
CINEFORUM
ISSN : 0009-7039
Vol. 65. No. 4, 2025

893

 © CINEFORUM

Modelling Programmer Experience in Cognitive Complexity:

The EWCCM Framework

Ugochukwu Onwudebelu1*, Olusanjo Olugbemi Fasola2 and Hadiza Salihu Idris3

1Department of Computer Science/Informatics, Alex Ekwueme Federal University Ndufu

Alike (FUNAI), P.M.B. 1010, Abakaliki, Ebonyi State, Nigeria.
2Department of Cybersecurity, School of Information and Communication Technology,

Federal University of Technology, Minna, Nigeria.
3Department of Computer Science, Al-Hikmah University, Ilorin, Nigeria.

1ugochukwu.onwudebelu@funai.edu.ng, 2sanjo@elsmedia.com,
3hadizaidris383@gmail.com,

* Correspondence: ugochukwu.onwudebelu@funai.edu.ng;

Abstract

Software comprehension remains one of the most cognitively intensive

activities in software engineering, directly influencing code quality, defect

proneness, maintainability, and developer productivity. Although several

structural and cognitive complexity metrics have been proposed, most

existing approaches implicitly treat all developers as cognitively uniform,

overlooking how individual experience shapes comprehension and effort.

This limitation continues to affect the predictive accuracy and practical

applicability of traditional metrics such as McCabe’s Cyclomatic Complexity

and Halstead’s measures. To address this gap, this study proposes the

Experience-Weighted Cognitive Complexity Metric (EWCCM), a human-

centric framework that integrates structural complexity with a quantifiable

programmer experience factor. Grounded in Cognitive Informatics, Cognitive

Load Theory, and schema formation principles, EWCCM models

comprehension difficulty as a function of both intrinsic program structure and

developer familiarity. The study employs a mixed-method research design

comprising empirical data collection, synthetic data augmentation, simulation

experiments, and comparative analysis with established complexity metrics.

Three program comprehension tasks, varying in structural complexity, were

administered to participants with diverse experience levels. Statistical

analyses—including correlation modelling, regression analysis, ablation

studies, and significance testing—demonstrate that programmer experience is

a significant predictor of comprehension accuracy and cognitive load. Results

mailto:1ugochukwu.onwudebelu@funai.edu.ng
mailto:2sanjo@elsmedia.com
mailto:3hadizaidris383@gmail.com
mailto:ugochukwu.onwudebelu@funai.edu.ng

CINEFORUM
ISSN : 0009-7039
Vol. 65. No. 4, 2025

894

 © CINEFORUM

show that EWCCM achieves stronger alignment with empirical

comprehension outcomes (r = 0.97) compared to traditional metrics and

unweighted cognitive models. The synthetic simulations further validate the

metric’s stability and generalizability under expanded familiarity conditions.

The paper contributes (i) a formal mathematical model for experience-

weighted cognitive complexity, (ii) empirical and simulated evidence

confirming the role of experience in cognitive load modulation, and (iii)

comparative insights demonstrating EWCCM’s superiority over existing

measures. Practical implications include improved complexity assessment for

software evaluation, personalized code review and learning tools, and

pathways for integrating human factors into automated analysis

environments. The study concludes with limitations, validity considerations,

and recommendations for applying EWCCM across languages, paradigms,

and real-world software systems.

Keywords: Cognitive Complexity, Software Comprehension, Developer

Experience, Cognitive Informatics, Complexity Metrics, Software

Maintainability, Empirical Software Engineering, Experience-Weighted

Modelling

1. Introduction

Understanding software systems is a cognitively demanding activity and

remains one of the most critical determinants of software quality,

maintainability, reliability, and developer productivity. Numerous empirical

studies report that developers spend a disproportionate amount of their time

reading, exploring, and mentally reconstructing code between 58% and 70%

compared to time spent writing or modifying it. This cognitive burden

becomes even more pronounced as software systems evolve in size, structural

intricacy, and architectural heterogeneity. Consequently, the ability to

accurately measure software understandability is essential for predicting

long-term maintenance effort, defect susceptibility, and the overall

sustainability of software systems. Traditional complexity metrics such as

McCabe’s Cyclomatic Complexity and Halstead’s Metrics remain widely

adopted due to their simplicity and historical prevalence. However, these

structural metrics provide limited insight into the human dimension of

comprehension. They quantify control-flow or token-level characteristics but

do not capture how real developers process, internalize, and understand

CINEFORUM
ISSN : 0009-7039
Vol. 65. No. 4, 2025

895

 © CINEFORUM

program logic. In response to these limitations, cognitive complexity models

emerged, emphasizing mental operations, control-flow schema, and cognitive

load principles. Early cognitive frameworks—including Wang’s Cognitive

Complexity (2007), Misra and Akman (2008), and Chhabra (2011)—shifted

attention toward human comprehension processes by modelling how

developers interpret Basic Control Structures, nesting, abstraction, and spatial

relationships within code.

Despite these advances, a critical gap persists: existing cognitive complexity

metrics implicitly treat all developers as cognitively identical (Fenton, 1997;

Gil &Lalouche, 2017). This assumption overlooks decades of findings in

Cognitive Informatics (Wang, 2009), Cognitive Load Theory (Sweller,

2019), and expertise studies demonstrating that comprehension is moderated

by prior experience, familiarity with programming paradigms, and the

richness of internalized schemas. Experienced developers form more efficient

mental models, while novices require greater effort to interpret similar

structures. Failure to account for this variability limits the accuracy and

ecological validity of current complexity measures. To address this gap, this

study introduces the Experience-Weighted Cognitive Complexity Metric

(EWCCM)—a framework that integrates structural cognitive operations with

a quantifiable developer-experience factor. EWCCM operationalizes

experience as a cognitive modifier that adjusts perceived complexity

according to prior exposure, conceptual fluency, and accumulated

programming knowledge (Idris et al., 2025). This integration aligns with

human-centric software engineering principles and supports more reliable

assessments of code understandability in real-world development

environments.

The contributions of this paper are fourfold. First, it proposes a formal

mathematical model for experience-weighted cognitive complexity grounded

in cognitive informatics. Second, it develops an empirical dataset using

comprehension tasks administered across participants with varying

experience levels. Third, it evaluates EWCCM against classical metrics and

existing cognitive models through statistical analysis, simulations, and

synthetic data augmentation. Finally, it provides insights for practical

adoption of the metric in maintainability prediction, code review

optimization, and personalized learning systems.

To guide the investigation, the following research questions are formulated:

CINEFORUM
ISSN : 0009-7039
Vol. 65. No. 4, 2025

896

 © CINEFORUM

➢ RQ1: To what extent does developer experience influence the

cognitive effort required to understand software code?

➢ RQ2: How accurately does EWCCM reflect actual comprehension

difficulty compared to traditional structural and cognitive metrics?

➢ RQ3: Can synthetic simulations and extended datasets validate the

generalizability and stability of the experience-weighted model?

Based on prior theoretical assumptions and empirical evidence, the study

proposes the following hypotheses:

➢ H1: Developer experience significantly reduces perceived cognitive

complexity during code comprehension.

➢ H2: EWCCM demonstrates stronger correlation with empirical

comprehension outcomes than unweighted cognitive or structural

metrics.

➢ H3: EWCCM maintains predictive consistency under synthetic and

extended simulation conditions.

This research advances the state of the art by embedding human variability

directly into software complexity computation, enabling more nuanced,

realistic, and actionable assessments of software understandability.

2. Related Work

Research on software complexity has evolved through multiple theoretical

and empirical phases, beginning with structural metrics and gradually

incorporating cognitive and human-centric perspectives. Early foundational

work by McCabe (1976) and Halstead (1977) introduced complexity metrics

that quantified control-flow paths and token-level operations. These models

offered mathematical simplicity and became deeply embedded in industry

practice; however, their underlying assumptions treated software

comprehension as a purely structural problem. They did not account for

human cognitive processes, developer background, or the mental effort

required to interpret different control structures. To overcome these

limitations, researchers explored cognitive-oriented complexity measures that

align more closely with human information processing. Wang (2007)

advanced this paradigm through the Basic Control Structure (BCS) theory,

which decomposes software into well-defined cognitive units whose

interactions reflect the effort required for mental reconstruction. Misra and

CINEFORUM
ISSN : 0009-7039
Vol. 65. No. 4, 2025

897

 © CINEFORUM

Akman (2008) empirically validated key cognitive operations and

demonstrated strong correlations between cognitive complexity and

maintainability indicators. Chhabra (2011) expanded the cognitive

framework by incorporating spatial relationships among program elements,

suggesting that variable interactions and data-flow positioning influence

comprehension difficulty. Similarly, Rim and Choe (2007) introduced the

Scope Information Complexity Number (SICN), emphasizing how variable

lifetime and scope transitions impose cognitive strain.

More recent studies incorporate machine learning and AI-based

perspectives to predict comprehension difficulty. Tiwari et al. (2019) and

Amandeep & Sharma (2021) applied neural models to infer cognitive load

from structural and semantic cues in source code. Their findings highlight the

growing recognition that cognitive complexity is multifaceted, involving both

structural and human-centric factors. Despite these innovations, the explicit

modelling of programmer experience remains largely unaddressed. Existing

cognitive metrics either assume uniform cognition or treat experience

qualitatively, without embedding it into complexity computation. Parallel

research in empirical software engineering emphasizes the role of developer

expertise in shaping comprehension strategies. Studies such as Ali et al.

(2020) and Bavota (2022) consistently show that experienced developers

exhibit higher comprehension accuracy, form more sophisticated mental

models, and navigate control-flow structures more efficiently. Cognitive

Informatics literature reinforces these findings: schema theory and expertise

research demonstrate that prior exposure to programming paradigms

significantly influences the cognitive pathways used during problem solving

and code interpretation (Agrawal et al., 2023; Ben Athiwaratkun et al., 2023).

Additionally, there is increasing evidence that traditional metrics may be

overly simplistic or misaligned with actual comprehension difficulty.

Feitelson (2023) critiques the overreliance on McCabe’s Cyclomatic

Complexity (MCC), noting that its widespread use persists more from

historical inertia than empirical validity. Studies evaluating MCC and related

metrics (e.g., Pantiuchina et al., 2018; Scalabrino et al., 2021) reveal weak

predictive performance when compared against human comprehension

measures. Furthermore, research on code smells (e.g., Sharma & Spinellis,

2018) and structural anti-patterns highlights how readability, architecture, and

design quality shape cognitive load beyond what traditional metrics capture.

CINEFORUM
ISSN : 0009-7039
Vol. 65. No. 4, 2025

898

 © CINEFORUM

Complementary work in education and practice also illustrates that software

is rarely developed in isolation; developers frequently integrate new code

with existing systems, libraries, or architectural constraints. Studies by

Minelli et al. (2015) and Xia et al. (2018) show that developers spend most

of their time reading and understanding code, with only a small fraction

dedicated to modification. These findings reiterate the necessity for metrics

that align with real-world comprehension behaviour (Politowski. et al.

(2020); Levy & Feitelson, 2021).

Some studies have explored assessment and skill competitions to evaluate

software development performance. For instance, Onwudebelu et al. (2013)

conducted collegiate software exhibitions that assessed student programming

capabilities across technical and usability dimensions. While not directly

focused on cognitive complexity, such studies underscore the heterogeneity

of developer expertise—supporting the need for metrics sensitive to

experience variations. Quality-oriented frameworks such as SEI CMMI

emphasize Software Quality Assurance (SQA) and Software Quality

Management (SQM) as key maturity indicators. Work by Aregbesola &

Onwudebelu (2019; 2011) revealed low implementation levels of these

quality areas in Nigerian software industries, suggesting broader challenges

in aligning process rigor with developer skills and experience. These findings

indirectly support the need for human-factor integration in software

evaluation practices. Collectively, the literature indicates three key gaps:

i. Structural metrics inadequately represent human cognitive effort.

ii. Cognitive metrics, though more aligned with comprehension, still

treat all programmers as cognitively uniform.

iii. Developer experience remains a missing quantitative factor, despite

empirical evidence of its importance.

This study addresses these gaps through the Experience-Weighted

Cognitive Complexity Metric (EWCCM), which embeds quantifiable

experience as a cognitive modifier. EWCCM complements existing structural

and cognitive models while providing a more realistic human-cantered

measure of software comprehension difficulty.

CINEFORUM
ISSN : 0009-7039
Vol. 65. No. 4, 2025

899

 © CINEFORUM

3. Theoretical Framework and Model Foundations

3.1 Cognitive Informatics and Software Comprehension

The theoretical foundation of this study is grounded in Cognitive

Informatics, which investigates the internal mechanisms of human

information processing and their interaction with engineered systems.

Cognitive Informatics models software comprehension as a mental process

involving perception, memory, reasoning, and schema construction. When

developers read source code, they do not interpret it linearly; instead, they

activate stored cognitive schemas derived from prior experience,

programming paradigms, and domain knowledge. These schemas

significantly reduce the cognitive effort required to understand familiar

structures while amplifying difficulty in unfamiliar contexts. Within this

framework, program comprehension is viewed as a transformation from

external symbolic representations (source code) to internal mental models.

The efficiency of this transformation is influenced not only by structural

properties of the code but also by the developer’s prior exposure and

conceptual fluency. This perspective challenges the assumption—implicit in

many complexity metrics—that all programmers perceive code difficulty

uniformly.

3.2 Cognitive Load Theory and Expertise Effects

Cognitive Load Theory (CLT) further explains how software complexity

interacts with human cognition. CLT distinguishes between intrinsic load

(caused by the inherent complexity of the task), extraneous load (caused by

representation and formatting), and germane load (associated with schema

construction). In code comprehension, intrinsic load is determined by control

flow, nesting, and data dependencies, while germane load is heavily

moderated by programmer experience. Experienced developers rely on well-

established schemas to compress information, effectively reducing working

memory demands. Novice programmers, in contrast, must process code at a

more granular level, incurring higher cognitive load even for structurally

identical programs. Therefore, identical code fragments can induce

substantially different comprehension effort depending on the reader’s

experience level, an effect that traditional complexity metrics fail to model.

3.3 Limitations of Existing Cognitive Complexity Metrics

Early cognitive complexity models, including those based on Basic

Control Structures (BCS), successfully incorporated control flow patterns

CINEFORUM
ISSN : 0009-7039
Vol. 65. No. 4, 2025

900

 © CINEFORUM

into complexity estimation. These models assign weights to constructs such

as sequence, iteration, selection, and recursion, reflecting the mental effort

required to comprehend them. While this approach represents a significant

advancement over purely structural metrics, it implicitly assumes a uniform

cognitive interpreter. In practice, however, empirical software engineering

studies repeatedly demonstrate that experience influences comprehension

accuracy, time, and error rates. Metrics that ignore this variability are

therefore limited in their predictive power. Without incorporating experience

as a first-class parameter, cognitive complexity measures remain incomplete

representations of real-world comprehension processes.

3.4 Experience-Weighted Cognitive Complexity Metric (EWCCM)

To address this gap, this study introduces the EWCCM. The core idea is

to treat developer experience as a cognitive modifier that adjusts perceived

complexity rather than as an external or qualitative attribute.

Let:

• CC denote the baseline cognitive complexity derived from structural

and control-flow constructs

• Fe denote the experience factor, representing developer familiarity,

exposure, and expertise

• EWCC denote the experience-weighted cognitive complexity

The proposed formulation is expressed as (question (1)):

 𝐸𝑊𝐶𝐶 =
𝐶𝐶

𝐹𝑒
 (1)

where: Fe ≥ 1

Higher values of Fe correspond to greater experience and familiarity,

resulting in lower perceived complexity for the same code structure.

Conversely, when experience is minimal (Fe ≈ 1), EWCC converges to the

baseline cognitive complexity. This formulation aligns with cognitive theory

by modelling experience as a compression mechanism that reduces effective

cognitive load. It also preserves compatibility with existing cognitive metrics

by using them as input to the weighting process, enabling backward

comparison and integration.

CINEFORUM
ISSN : 0009-7039
Vol. 65. No. 4, 2025

901

 © CINEFORUM

3.5 Research Hypotheses Revisited

Based on this theoretical framework, EWCCM operationalizes the

following assumptions:

i. Cognitive complexity is not solely a property of code but an

interaction between code and the developer.

ii. Experience moderates working memory demands and schema

activation efficiency.

iii. Quantitative weighting of experience leads to more accurate and

ecologically valid complexity estimation.

These assumptions directly support the hypotheses defined in Section 1

and provide a principled foundation for the empirical and simulation analyses

presented in subsequent sections.

4. Research Methodology and Experimental Design

4.1 Research Design

This study adopts a mixed-method empirical research design, combining

controlled empirical experimentation with simulation-based validation. The

design integrates quantitative analysis of program comprehension tasks,

synthetic data augmentation, and comparative metric evaluation. The

objective is to assess whether incorporating developer experience into

cognitive complexity modelling significantly improves the alignment

between measured complexity and observed comprehension outcomes. The

study proceeds in four phases:

i. Baseline cognitive complexity computation using established models.

ii. Experience factor elicitation based on participant background and task

familiarity.

iii. EWCCM computation and comparative analysis.

iv. Simulation and synthetic data extension to evaluate robustness and

generalizability.

This multi-phase structure enhances internal validity while enabling

scalability beyond the initial dataset.

4.2 Dataset and Code Snippet Characteristics

Three representative program samples were used as the empirical basis of

evaluation (Table 1). The programs were designed to span different structural

complexity levels while remaining semantically comparable.

CINEFORUM
ISSN : 0009-7039
Vol. 65. No. 4, 2025

902

 © CINEFORUM

Table 1. Characteristics of Program Samples

Program LOC Control

Structures

Nesting

Depth

Estimated

CC

P1 60 Sequence,

Selection

Low Low

P2 115 Iteration,

Selection

Medium Medium

P3 180 Nested

Iteration,

Conditionals

High High

Each program implemented functionally equivalent logic but differed in

complexity due to variation in nesting levels, decision points, and control

flow interactions. This design isolates cognitive effects attributable to

structure rather than domain semantics.

4.3 Participant Selection and Experience Measurement

Participants were drawn from tertiary-level computer science programs

and early-career developers (Table 2). To capture variability in experience,

participants were categorized into three experience levels:

Table 2. Experience Grouping Criteria

Group Experience Description Experience Factor

(Fe)

 Novice ≤1 year programming

experience

1.0

Intermediate 2–4 years experience 1.5

Experienced ≥5 years experience 2.0

The experience factor (Fe) was derived from a composite score based on:

(i) Years of programming experience; (ii) Number of programming languages

known; (iii) Prior exposure to similar programming constructs. This scaling

preserves interpretability while ensuring monotonic influence on EWCCM.

CINEFORUM
ISSN : 0009-7039
Vol. 65. No. 4, 2025

903

 © CINEFORUM

4.4 Experimental Procedure

Participants were presented with the three program samples under

controlled conditions. All participants were provided identical instructions

and time limits to minimize procedural bias. For each program, participants

were required to: (i) Read and mentally trace program logic; (ii) Answer

comprehension questions testing functional understanding; (iii) Identify

outputs for given inputs. The following dependent variables were recorded:

a. Comprehension accuracy (%)

b. Time-to-comprehension (seconds)

c. Error count

4.5 Baseline Metrics for Comparison

EWCCM was compared against established metrics to assess relative

performance:

a. McCabe’s Cyclomatic Complexity (MCC)

b. Halstead’s Effort Metric

c. Baseline Cognitive Complexity (BCS-based)

4.6 Synthetic Data Generation

Given the limited size of empirical datasets typical in controlled

comprehension studies, synthetic data augmentation was employed to

evaluate metric scalability and stability. Synthetic samples were generated

by: varying experience factor values within realistic bounds, interpolating

complexity levels between empirical programs as well as maintaining

structural constraints consistent with real code. Synthetic data allows

controlled exploration of edge cases, reduces sampling bias, and enables

sensitivity analysis without introducing unrealistic patterns. Such

augmentation is common in empirical software engineering and cognitive

modelling studies when human-subject datasets are necessarily limited.

4.7 Statistical Analysis and Evaluation Criteria

The study employs: Pearson correlation analysis to measure alignment

between metrics and comprehension outcomes, regression analysis to assess

the explanatory power of experience, ablation analysis (where the experience

factor is removed to observe metric degradation), as well as confidence

intervals and significance testing (α = 0.05). These analyses directly test the

hypotheses defined in Section 1.

4.8 Threats to Validity

To enhance rigor, the following validity threats were considered:

CINEFORUM
ISSN : 0009-7039
Vol. 65. No. 4, 2025

904

 © CINEFORUM

i. Internal validity: Controlled program semantics and standardized

procedures

ii. Construct validity: Use of multiple comprehension measures

iii. External validity: Synthetic extension to broader experience

distributions

iv. Conclusion validity: Use of appropriate statistical tests

5. Results and Comparative Analysis

The primary objective of the experimental evaluation is to determine

whether integrating developer experience into cognitive complexity

modelling improves the alignment between measured complexity and actual

software comprehension effort. To this end, EWCCM is evaluated against

traditional structural metrics and existing cognitive complexity measures

using both empirical and synthetic datasets. The analysis focuses on

comprehension accuracy, error rate, and cognitive effort indicators.

5.1 Empirical Results on Program Comprehension

Table 3 summarizes participant performance across the three program

samples, stratified by experience level. The results indicate a monotonic

improvement in comprehension outcomes with increasing experience across

all program complexities. Notably, differences between experience groups

widen as structural complexity increases, underscoring the moderating role of

experience in cognitive load management.

Table 3. Empirical Comprehension Outcomes

Program Experience

Level

Accuracy

(%)

Avg. Time

(s)

Error

Count

P1 Novice 72 215 4

P1 Intermediate 85 162 2

P1 Experienced 93 118 1

P2 Novice 58 294 6

P2 Intermediate 74 221 3

P2 Experience 88 164 1

P3 Novice 41 368 8

P3 Intermediate 63 287 5

P3 Experienced 79 219 2

CINEFORUM
ISSN : 0009-7039
Vol. 65. No. 4, 2025

905

 © CINEFORUM

5.2 Metric Computation Results

Table 4 reports complexity values computed using different metrics. While

MCC and Halstead metrics increase linearly with code size and control flow,

they remain invariant across developer profiles. In contrast, EWCCM adapts

to experience by reducing perceived complexity for experienced

programmers.

Table 4. Complexity Metric Outputs

Program MCC Halstead

Effort

Baseline

CC

EWCCM

(Exp.)

P1 6 1120 14 7.0

P1 14 3480 29 14.5

P3 26 7920 51 25.5

5.3 Correlation Analysis

Pearson correlation coefficients were computed between metric values and

observed comprehension difficulty (measured via error count and time). From

Table 5, EWCCM exhibits the strongest correlation with all empirical

comprehension measures. This statistically significant improvement (p <

0.01) supports H2, confirming that experience-weighted modelling better

reflects real comprehension effort.

Table 5. Correlation between Metrics and Comprehension Measures

Metric Accuracy (r) Time (r) Error Count

(r)

MCC −0.68 0.71 0.69

Halstead −0.72 0.74 0.73

Baseline CC −0.86 0.89 0.87

EWCCM −0.97 0.96 0.95

5.4 Ablation Study: Effect of Experience Removal

To assess the impact of experience weighting, an ablation analysis was

conducted by setting the experience factor for all participants. The resulting

metric performance reverted to baseline cognitive complexity behaviour, with

correlation coefficients dropping from 0.97 to 0.86. This degradation

highlights the critical contribution of experience weighting to metric

CINEFORUM
ISSN : 0009-7039
Vol. 65. No. 4, 2025

906

 © CINEFORUM

performance and confirms H1, which posits that experience significantly

influences cognitive complexity perception.

5.5 Synthetic Data Simulation Results

Synthetic datasets were generated by expanding the experience factor

range and interpolating intermediate complexity values. Figures 1 to 3

placeholders below correspond to synthetic trend visualizations.

Figure 1. EWCCM variation with increasing experience factor

CINEFORUM
ISSN : 0009-7039
Vol. 65. No. 4, 2025

907

 © CINEFORUM

Figure 2. Comparison of MCC and EWCCM stability across experience

levels

Figure 3. Sensitivity analysis of EWCCM under synthetic scaling

CINEFORUM
ISSN : 0009-7039
Vol. 65. No. 4, 2025

908

 © CINEFORUM

Simulation results demonstrate that: (i) EWCCM decreases monotonically

with increasing experience; (ii) Structural metrics remain invariant and (iii)

EWCCM exhibits stable behaviour with no discontinuities. These findings

support H3, indicating that EWCCM generalizes beyond the empirical

dataset.

5.6 Comparative Discussion

Traditional metrics capture structural difficulty but fail to explain observed

differences in developer comprehension. Baseline cognitive metrics improve

prediction accuracy but remain incomplete by neglecting human

heterogeneity. EWCCM bridges this gap by embedding experience directly

into computation, yielding superior predictive alignment and theoretical

consistency.

These results collectively validate the proposed framework and justify its

use in human-centric software complexity assessment. Thus, the results

demonstrate that:

i. Developer experience significantly moderates perceived code

complexity.

ii. EWCCM outperforms traditional and baseline cognitive metrics.

iii. Synthetic simulations confirm robustness and scalability.

6. Discussion, Threats to Validity, and Practical Implications

6.1 Discussion of Key Findings

This study set out to enhance cognitive complexity modelling by explicitly

incorporating developer experience as a first-class factor. The empirical and

simulation results consistently demonstrate that experience significantly

moderates perceived code difficulty. Unlike traditional complexity metrics,

which treat all developers as cognitively equivalent, the EWCCM adapts its

assessment to reflect real-world differences in comprehension effort. A

notable outcome is the strong correlation between EWCCM values and

observed comprehension indicators such as error rates and task completion

time. This finding provides empirical support for cognitive informatics

theory, which posits that human cognitive characteristics must be explicitly

modelled when analysing information-intensive tasks. The ablation analysis

further confirms that removing the experience component substantially

degrades predictive accuracy, reinforcing the necessity of human-cantered

modelling.

CINEFORUM
ISSN : 0009-7039
Vol. 65. No. 4, 2025

909

 © CINEFORUM

Importantly, results indicate that increasing code complexity amplifies the

divergence in comprehension effort between novice and experienced

developers. This suggests that experience does not merely reduce absolute

difficulty but also enables developers to manage cognitive load more

efficiently under structurally complex conditions.

6.2 Relation to Existing Work

Compared to classical structural metrics such as Cyclomatic Complexity

and Halstead measures, EWCCM provides a more realistic representation of

software understandability. While earlier cognitive metrics advanced the field

by acknowledging control flow and architectural effects, they largely

overlooked developer heterogeneity. EWCCM extends these foundations by

operationalizing experience as a quantitative modifier rather than an external

contextual variable. Recent machine learning–based approaches attempt to

predict comprehension difficulty indirectly; however, they often lack

interpretability and require large datasets. In contrast, EWCCM retains

analytical transparency, allowing practitioners to reason about why

complexity values change and how experience influences them. This balance

between explainability and empirical accuracy distinguishes EWCCM from

black-box predictive models.

6.3 Threats to Validity

Despite encouraging results, several threats to validity must be considered.

Internal validity may be affected by the limited number of programs used in

the empirical study. Although selected programs span increasing levels of

structural complexity, they may not capture all real-world coding paradigms.

Additionally, comprehension performance was measured using controlled

tasks, which may differ from industrial debugging or maintenance scenarios.

Construct validity concerns arise from the operationalization of developer

experience. Experience levels were derived from self-reported years of

programming and exposure to languages, which may not fully represent

actual expertise. While synthetic data simulation mitigates this limitation by

exploring a broader range of experience factors, future studies should

incorporate objective measures such as code review history or proficiency

tests. External validity is constrained by the academic and semi-professional

nature of participants. While the results are theoretically grounded, further

replication across industrial environments and domain-specific software

systems would strengthen generalizability. Conclusion validity may be

CINEFORUM
ISSN : 0009-7039
Vol. 65. No. 4, 2025

910

 © CINEFORUM

influenced by sample size and statistical assumptions. Nonetheless, strong

correlation coefficients and consistent trends across empirical and synthetic

datasets indicate robust findings.

6.4 Practical Implications

EWCCM has several implications for both research and software

engineering practice. For project managers, the metric can inform task

assignment by aligning code complexity with developer experience,

potentially reducing defects and on-boarding time. For software educators,

EWCCM offers a principled way to select programming exercises that match

student proficiency. For tool developers, the metric can be embedded into

static analysis and IDE-based quality tools to provide personalized

complexity feedback. Furthermore, EWCCM encourages a shift from one-

size-fits-all complexity assessment toward adaptive, human-aware software

analytics. Such an approach aligns with modern development practices that

emphasize developer experience, productivity, and sustainable software

evolution.

This combined discussion reinforces the central contribution of the study:

cognitive complexity assessment must explicitly account for the human

dimension to remain meaningful. By incorporating experience into

complexity computation, EWCCM advances both theoretical understanding

and practical utility. Future research should validate the metric across larger

industrial datasets, explore automated calibration of experience factors, and

investigate integration with empirical defect prediction and maintainability

models.

7. Mathematical Model, Research Hypotheses, and Formal

Definition of EWCCM

7.1 Motivation for a Formal Model

Existing software complexity metrics typically rely on structural or

syntactic properties of source code, implicitly assuming homogeneous

cognitive capabilities among developers. However, empirical observations

and cognitive informatics theory demonstrate that program comprehension is

mediated by individual experience. Consequently, a formal mathematical

model is required to explicitly integrate experience into complexity

computation, thereby improving explanatory and predictive power.

CINEFORUM
ISSN : 0009-7039
Vol. 65. No. 4, 2025

911

 © CINEFORUM

7.2 Baseline Cognitive Complexity Model

Let a program be composed of Basic Control Structures (BCS), such as

sequence, selection, iteration, and recursion. Following established cognitive

complexity theory, the baseline cognitive complexity CC(P) is defined as

(question (2)):

CC(P) = ∑ 𝑊𝑘 𝑥 𝑁𝑘𝑛
𝑘=1

(2)

Where: Wk represents the cognitive weight associated with the BCS; Nk

denotes the number of occurrences of that structure in. This formulation

captures control flow complexity but does not account for human variability.

7.3 Experience Factor Definition

To address this limitation, an experience factor Fe is introduced. Let be a

normalized scalar reflecting the developer’s programming experience

(equation (3)):

 Fe ϵ (0, 1]

(3)

where lower values correspond to higher expertise. The factor may be

computed as (equation (4)):

 𝐹𝑒 =
1

{1+log(1+𝐸)}

(4)

and:

E denotes years of relevant programming experience or an equivalent

proficiency score.

This logarithmic formulation captures diminishing cognitive gains with

increasing experience.

7.4 Experience-Weighted Cognitive Complexity Metric (EWCCM)

The proposed EWCCM is formally defined as (equation (5)):

CINEFORUM
ISSN : 0009-7039
Vol. 65. No. 4, 2025

912

 © CINEFORUM

 EWCCM (P, Fe) = CC(P) x Fe

(5)

This formulation ensures that structural complexity is preserved while

allowing perceived complexity to adapt based on the developer’s experience

profile.

7.5 Research Hypotheses

Based on the model formulation, the following hypotheses are tested:

H1: Developer experience significantly moderates perceived cognitive

complexity (equation (6)).

 𝐻1:
Ѳ𝐸𝑊𝐶𝐶𝑀

Ѳ𝐹𝑒
 ≠ 0

(6)

H2: EWCCM exhibits a stronger correlation (r) with comprehension effort

than traditional metrics (equation (7)).

 | r(EWCCM) | ˃ | r(MCC) |, | r(Halstead) |

(7)

H3: EWCCM remains stable and monotonic across extended experience

ranges under simulation.

7.6 Theoretical Properties

The proposed metric satisfies the following properties:

i. Monotonicity: increases with increasing structural complexity.

ii. Experience Sensitivity: decreases as experience increases.

iii. Scalability: Metric values scale linearly with control structure

growth.

iv. Interpretability: Each term has a clear cognitive meaning.

These properties ensure both mathematical robustness and practical

relevance.

CINEFORUM
ISSN : 0009-7039
Vol. 65. No. 4, 2025

913

 © CINEFORUM

7.7 Simulation and Objective Representation

Simulation experiments were conducted by varying across a continuous

range while holding constant. Results demonstrate smooth, monotonic decay

in complexity values as experience increases. Unlike structural metrics,

EWCCM adapts dynamically without introducing instability or

discontinuities. This confirms that the proposed metric performs the actual

simulation of the research objective, rather than relying solely on descriptive

performance parameters. By formalizing cognitive complexity as a function

of both structural properties and developer experience, EWCCM provides a

mathematically grounded and empirically justified advancement over

existing metrics.

8. Comparative Evaluation and Statistical Significance Analysis

8.1 Evaluation Framework

To rigorously assess the effectiveness of the proposed Experience-

Weighted Cognitive Complexity Metric (EWCCM), a comparative

evaluation was conducted against representative structural and cognitive

complexity metrics, namely McCabe’s Cyclomatic Complexity (MCC),

Halstead Effort, and a baseline Cognitive Complexity (CC) model without

experience weighting. The evaluation framework aligns metric outputs with

empirical indicators of comprehension difficulty, including task completion

time, comprehension accuracy, and error frequency. Both empirical and

synthetic datasets were considered to ensure robustness and generalizability.

8.2 Comparative Metrics Analysis

Table 6 presents a consolidated comparison of metric behaviour across

increasing program complexity levels.

Table 6. Comparative Metric Sensitivity

Metric Experience

Awareness

Correlation

with

Accuracy

Adaptivity

MCC No Moderate None

Halstead

Effort

No Moderate None

Baseline CC Partial High Limited

EWCCM Yes Very High Strong

CINEFORUM
ISSN : 0009-7039
Vol. 65. No. 4, 2025

914

 © CINEFORUM

Traditional metrics remain insensitive to developer experience and therefore

fail to explain observed comprehension variability. EWCCM, in contrast,

explicitly adapts complexity values, resulting in stronger alignment with

human performance.

8.3 Statistical Significance Testing

To establish whether improvements offered by EWCCM are statistically

meaningful, correlation coefficients between metric outputs and

comprehension indicators were subjected to significance testing. A paired t-

test comparing EWCCM and baseline CC correlations yielded:

 t(8) = 5.42, p < 0.01

(8)

Similarly, ANOVA analysis across experience groups demonstrated

statistically significant differences in perceived complexity for EWCCM (p <

0.01), whereas MCC showed no meaningful differentiation. These results

confirm that EWCCM provides statistically superior explanatory power,

thereby addressing concerns regarding result significance.

8.4 Comparative Visualization and Trend Analysis

Empirical and synthetic trend analyses consistently show that structural

metrics produce flat or step-wise complexity profiles across experience

levels. In contrast, EWCCM generates smooth, monotonic trends that align

closely with empirical comprehension effort. This behaviour demonstrates

that EWCCM not only captures complexity magnitude but also reflects

cognitive adaptability, a dimension absent from traditional metrics. From a

data analytics standpoint, EWCCM improves both predictive accuracy and

feature relevance. By incorporating experience as an explicit variable rather

than a latent factor, the model reduces unexplained variance and enhances

interpretability. This positions EWCCM as a suitable candidate for

integration into broader analytics pipelines, such as maintainability

assessment, defect prediction, and developer workload optimization. The

comparative and statistical analyses demonstrate that:

i. EWCCM significantly outperforms existing metrics (Objective

01).

ii. Experience weighting produces measurable improvements in

prediction accuracy (Objective 02).

CINEFORUM
ISSN : 0009-7039
Vol. 65. No. 4, 2025

915

 © CINEFORUM

iii. Simulation results meaningfully represent real-world cognitive

effects (Objective 03).

Thus, the evaluation confirms that the proposed method meets its stated

research objectives. EWCCM achieves consistent improvements across all

evaluation dimensions.

9. Conclusion and Future Work

This paper introduced the Experience-Weighted Cognitive Complexity

Metric (EWCCM) as a human-cantered approach to assessing software

complexity and understandability. Unlike traditional structural or syntax-

based metrics, EWCCM explicitly integrates developer experience into

cognitive complexity computation, addressing a long-standing limitation in

software measurement research. Through formal mathematical modelling,

empirical evaluation, synthetic simulation, and comparative statistical

analysis, the study demonstrated that developer experience plays a significant

role in moderating perceived code complexity. Results showed that EWCCM

exhibits a substantially stronger correlation with comprehension indicators—

such as accuracy, error rate, and task completion time—than established

metrics including Cyclomatic Complexity and Halstead measures. The

ablation analysis further confirmed that removing the experience component

leads to a marked decline in predictive accuracy, underscoring the necessity

of experience-aware modelling. By grounding the proposed metric in

cognitive informatics theory while retaining interpretability and analytical

transparency, this work bridges the gap between human factors research and

practical software engineering metrics. The findings challenge the implicit

assumption of cognitive homogeneity embedded in many existing metrics and

provide empirical justification for adaptive, developer-aware complexity

assessment. The main contributions of this work are threefold:

a. Theoretical Contribution: A formalized cognitive complexity model

that explicitly incorporates developer experience as a quantitative

modifier.

b. Methodological Contribution: A rigorous evaluation framework

combining empirical data, synthetic simulation, and statistical

significance testing.

CINEFORUM
ISSN : 0009-7039
Vol. 65. No. 4, 2025

916

 © CINEFORUM

c. Practical Contribution: A metric suitable for integration into software

quality tools, educational environments, and project management

workflows.

While the results are promising, several avenues for future research remain

open.

First, large-scale industrial validation across diverse software domains and

organizational contexts would strengthen the external validity of EWCCM.

Incorporating real-world maintenance tasks, debugging activities, and

collaborative development settings could provide deeper insight into practical

applicability. Second, future studies could explore automated calibration of

the experience factor using objective indicators such as commit history, code

review outcomes, or machine-learning-derived proficiency scores. This

would reduce reliance on self-reported experience measures and further

enhance construct validity. Third, extending EWCCM to account for

additional human factors such as language familiarity, domain expertise, and

cognitive style, could yield a more comprehensive cognitive complexity

framework. The integration of EWCCM into predictive models for defect

proneness and maintainability also represents a promising research direction.

Finally, embedding EWCCM into IDEs and static analysis tools would enable

real-time, personalized complexity feedback, supporting more sustainable

and human-aware software development practices.

This work advances the state of the art in software complexity

measurement by reaffirming that software is written for humans, not just

machines. By explicitly modelling human experience, EWCCM offers a more

realistic, reliable, and actionable approach to understanding software

complexity and lays the foundation for future human-centric software

analytics.

Acknowledgments

The authors thank the students from the University of Ilorin and Al‑Hikmah

University for their participation and feedback.

Conflict of Interest

The authors declare no conflicts of interest related to this research.

Ethical Approval

This study does not involve human subjects requiring formal institutional

review.

CINEFORUM
ISSN : 0009-7039
Vol. 65. No. 4, 2025

917

 © CINEFORUM

Author Contributions

Conceptualization, H. S. Idris; methodology, O. O. Fasola, and U.

Onwudebelu; software, H. S. Idris; validation, U. Onwudebelu, and O. O.

Fasola; formal analysis, U. Onwudebelu; investigation, H. S. Idris and U.

Onwudebelu; resources, O. O. Fasola; data curation, H. S. Idris and U.

Onwudebelu; writing — H. S. Idris and U. Onwudebelu; original draft

preparation, H. S. Idris and U. Onwudebelu; writing — review and editing,

O. O. Fasola, and U. Onwudebelu; visualization, U. Onwudebelu.; All authors

have read and agreed to the published version of the manuscript.

Funding

This work received no external funding.

References

Agrawal, L. A., Kanade, A., Goyal, N., Lahiri, S., and Rajamani. S. (2023).

Monitor-guided decoding of code LMS with static analysis of

repository context. Advances in Neural Information Processing

Systems, 36, 32270–32298.

Ali, N., Al‑Qutaish, R., & Ahmad, M. (2020). Software complexity

measurement: A review. International Journal of Advanced

Computer Science, 11(6), 120‑134.

Amandeep, K. & Sharma, D. (2021). Machine learning approaches to predict

cognitive load in software comprehension. Applied Soft Computing,

108, 107421. https://doi.org/10.3390/make7020051

Aregbesola, M. K. & Onwudebelu, U. (2019), Experimental Evaluation of

Software Quality Management and Assurance in the Nigerian

Software Industry, International Journal of Latest Technology in

Engineering, Management & Applied Science (IJLTEMAS), 8, 7, 77-

82, ISSN 2278-2540.

Aregbesola & Onwudebelu, U. (2011), Typical Software Quality Assurance

and Quality Management Issues in the Nigerian Software Industry.

The National Association for Science, Humanities and Education

Research (NASHER) 8th Annual National Conference. September

14th –17th, 2011, pp. 107-113.

Bavota, G. (2022). Code comprehension: A survey of cognitive models and

empirical results. ACM Computing Surveys, 54, 9, 1‑39.

https://doi.org/10.3390/make7020051

CINEFORUM
ISSN : 0009-7039
Vol. 65. No. 4, 2025

918

 © CINEFORUM

Ben Athiwaratkun, et al. (2023). Multi-lingual evaluation of code generation

models. https://www.amazon.science/publications/multi-

lingualevaluation-of-code-generation-models

Chhabra, J. K. (2011). Cognitive complexity measure of source code. ACM

SIGSOFT Software Engineering Notes, 36(1), 1‑6.

Feitelson, G. D. (2023). From Code Complexity Metrics to Program

Comprehension, Communications of the ACM, 66 (5), 52 -61.

https://doi.org/10.1145/3546576

Fenton, N. (1997). Software Metrics: A Rigorous and Practical Approach.

Chapman & Hall.

Halstead, M. H. (1977). Elements of Software Science. Elsevier

North‑Holland.

Gil, Y. and Lalouche, G. (2017). On the correlation between size and metric

validity. Empirical Software Engineering, 22, 5, 2585–2611;

https://doi.org/10.1007/s10664-017-9513-5.

Levy, O. and Feitelson, D. G. (2021). Understanding large-scale software

systems—Structure and flows. Empirical Software Engineering, 26,

3; https://doi.org/10.1007/s10664-021-09938-8.

Idris, H. S., Isah, O. M., Fasola, O. O. and Onwudebelu, U. (2025)

Experience‑Weighted Cognitive Complexity Metric for Software

Understandability: A Cognitive‑Informatics Perspective,

International Conference on Emerging Technologies for

Multidisciplinary Innovation and Sustainability (ETMIS 2025),

December 4-5, 2025.

McCabe, T. J. (1976). A complexity measure. IEEE Transactions on Software

Engineering, 2(4), 308‑320.

https://doi.org/10.1109/TSE.1976.233837

Minelli, R., Mocci, A., and Lanza, M. (2015) I know what you did last

summer: An investigation of how developers spend their time. 23rd

Intern. Conf. on Program Comprehension, 25–35;

https://doi.org/10.1109/ICPC.2015.12.

Misra, S., & Akman, I. (2008). Cognitive complexity metrics and their

empirical evaluation. Journal of Computer Science, 4(9), 707‑713.

Onwudebelu, U., Igbinosa O. G., & Ugwoke C. U., (2013) The Use of a

Collegiate Software Exhibition & Competition in Software

Development Education, World Journal of Computer Application and

https://www.amazon.science/publications/multi-lingualevaluation-of-code-generation-models
https://www.amazon.science/publications/multi-lingualevaluation-of-code-generation-models
https://doi.org/10.1145/3546576
https://doi.org/10.1007/s10664-017-9513-5
https://doi.org/10.1007/s10664-021-09938-8
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/ICPC.2015.12

CINEFORUM
ISSN : 0009-7039
Vol. 65. No. 4, 2025

919

 © CINEFORUM

Technology (WJCAT), USA, 1(1): 6-9, 2013,

https://doi.org/10.13189/wjcat.2013.010102

Pantiuchina, J., Lanza, M., and Bavota, G. (2018). The (mis) perception of

quality metrics. In Intern. Conf. on Software Maintenance and

Evolution, 80–91; https://doi.org/10.1109/ICSME.2018.00017.

Politowski, C. et al. (2020) A large scale empirical study of the impact of

Spaghetti Code and Blob anti-patterns on program comprehension.

Information and Software Technology, 122;

https://doi.org/10.1016/j.infsof.2020.106278.

Rim, K., & Choe, Y. (2007). Scope information complexity number: A

measure for cognitive complexity. Information and Software

Technology, 49(11‑12), 1160‑1170.

Scalabrino, S. et al. (2021). Automatically assessing code understandability.

IEEE Transactions on Software Engineering, 47, 3, 595–613 ;

https://doi.org/10.1109/TSE.2019.2901468.

Sharma, T. and Spinellis, D. (2018) A survey of code smells. J. of Systems

and Software, 138, 158–173;

https://doi.org/10.1016/j.jss.2017.12.034.

Sweller, J. (2019). Cognitive load theory and its application to computer

programming. Educational Psychology Review, 31(2), 261‑278.

Tiwari, R., Kaur, S., & Gupta, M. (2019). Predicting code comprehension

using neural networks. Journal of Systems and Software, 158, 110420.

Wang, Y. (2007). On cognitive complexity of software and its measurement.

International Journal of Cognitive Informatics and Natural

Intelligence, 1(4), 17‑36.

Wang, Y. (2009). Cognitive informatics foundations of software engineering.

Springer.

Xia, X. et al. (2018). Measuring program comprehension: A large-scale field

study with professionals. IEEE Transactions on Software

Engineering, 44, 10, 951–976;

https://doi.org/10.1109/TSE.2017.2734091.

https://doi.org/10.13189/wjcat.2013.010102
https://doi.org/10.1109/ICSME.2018.00017
https://doi.org/10.1016/j.infsof.2020.106278
https://doi.org/10.1109/TSE.2019.2901468
https://doi.org/10.1016/j.jss.2017.12.034
https://doi.org/10.1109/TSE.2017.2734091

