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Abstract  

Software comprehension remains one of the most cognitively intensive 

activities in software engineering, directly influencing code quality, defect 

proneness, maintainability, and developer productivity. Although several 

structural and cognitive complexity metrics have been proposed, most 

existing approaches implicitly treat all developers as cognitively uniform, 

overlooking how individual experience shapes comprehension and effort. 

This limitation continues to affect the predictive accuracy and practical 

applicability of traditional metrics such as McCabe’s Cyclomatic Complexity 

and Halstead’s measures. To address this gap, this study proposes the 

Experience-Weighted Cognitive Complexity Metric (EWCCM), a human-

centric framework that integrates structural complexity with a quantifiable 

programmer experience factor. Grounded in Cognitive Informatics, Cognitive 

Load Theory, and schema formation principles, EWCCM models 

comprehension difficulty as a function of both intrinsic program structure and 

developer familiarity. The study employs a mixed-method research design 

comprising empirical data collection, synthetic data augmentation, simulation 

experiments, and comparative analysis with established complexity metrics. 

Three program comprehension tasks, varying in structural complexity, were 

administered to participants with diverse experience levels. Statistical 

analyses—including correlation modelling, regression analysis, ablation 

studies, and significance testing—demonstrate that programmer experience is 

a significant predictor of comprehension accuracy and cognitive load. Results 
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show that EWCCM achieves stronger alignment with empirical 

comprehension outcomes (r = 0.97) compared to traditional metrics and 

unweighted cognitive models. The synthetic simulations further validate the 

metric’s stability and generalizability under expanded familiarity conditions. 

The paper contributes (i) a formal mathematical model for experience-

weighted cognitive complexity, (ii) empirical and simulated evidence 

confirming the role of experience in cognitive load modulation, and (iii) 

comparative insights demonstrating EWCCM’s superiority over existing 

measures. Practical implications include improved complexity assessment for 

software evaluation, personalized code review and learning tools, and 

pathways for integrating human factors into automated analysis 

environments. The study concludes with limitations, validity considerations, 

and recommendations for applying EWCCM across languages, paradigms, 

and real-world software systems.  

Keywords: Cognitive Complexity, Software Comprehension, Developer 

Experience, Cognitive Informatics, Complexity Metrics, Software 

Maintainability, Empirical Software Engineering, Experience-Weighted 

Modelling 

 

1. Introduction 

Understanding software systems is a cognitively demanding activity and 

remains one of the most critical determinants of software quality, 

maintainability, reliability, and developer productivity. Numerous empirical 

studies report that developers spend a disproportionate amount of their time 

reading, exploring, and mentally reconstructing code between 58% and 70% 

compared to time spent writing or modifying it. This cognitive burden 

becomes even more pronounced as software systems evolve in size, structural 

intricacy, and architectural heterogeneity. Consequently, the ability to 

accurately measure software understandability is essential for predicting 

long-term maintenance effort, defect susceptibility, and the overall 

sustainability of software systems. Traditional complexity metrics such as 

McCabe’s Cyclomatic Complexity and Halstead’s Metrics remain widely 

adopted due to their simplicity and historical prevalence. However, these 

structural metrics provide limited insight into the human dimension of 

comprehension. They quantify control-flow or token-level characteristics but 

do not capture how real developers process, internalize, and understand 



CINEFORUM 
ISSN : 0009-7039 
Vol. 65. No. 4, 2025 

895 

   © CINEFORUM 

program logic. In response to these limitations, cognitive complexity models 

emerged, emphasizing mental operations, control-flow schema, and cognitive 

load principles. Early cognitive frameworks—including Wang’s Cognitive 

Complexity (2007), Misra and Akman (2008), and Chhabra (2011)—shifted 

attention toward human comprehension processes by modelling how 

developers interpret Basic Control Structures, nesting, abstraction, and spatial 

relationships within code. 

Despite these advances, a critical gap persists: existing cognitive complexity 

metrics implicitly treat all developers as cognitively identical (Fenton, 1997; 

Gil &Lalouche, 2017). This assumption overlooks decades of findings in 

Cognitive Informatics (Wang, 2009), Cognitive Load Theory (Sweller, 

2019), and expertise studies demonstrating that comprehension is moderated 

by prior experience, familiarity with programming paradigms, and the 

richness of internalized schemas. Experienced developers form more efficient 

mental models, while novices require greater effort to interpret similar 

structures. Failure to account for this variability limits the accuracy and 

ecological validity of current complexity measures. To address this gap, this 

study introduces the Experience-Weighted Cognitive Complexity Metric 

(EWCCM)—a framework that integrates structural cognitive operations with 

a quantifiable developer-experience factor. EWCCM operationalizes 

experience as a cognitive modifier that adjusts perceived complexity 

according to prior exposure, conceptual fluency, and accumulated 

programming knowledge (Idris et al., 2025). This integration aligns with 

human-centric software engineering principles and supports more reliable 

assessments of code understandability in real-world development 

environments. 

The contributions of this paper are fourfold. First, it proposes a formal 

mathematical model for experience-weighted cognitive complexity grounded 

in cognitive informatics. Second, it develops an empirical dataset using 

comprehension tasks administered across participants with varying 

experience levels. Third, it evaluates EWCCM against classical metrics and 

existing cognitive models through statistical analysis, simulations, and 

synthetic data augmentation. Finally, it provides insights for practical 

adoption of the metric in maintainability prediction, code review 

optimization, and personalized learning systems. 

To guide the investigation, the following research questions are formulated: 
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➢ RQ1: To what extent does developer experience influence the 

cognitive effort required to understand software code? 

➢ RQ2: How accurately does EWCCM reflect actual comprehension 

difficulty compared to traditional structural and cognitive metrics? 

➢ RQ3: Can synthetic simulations and extended datasets validate the 

generalizability and stability of the experience-weighted model? 

 

Based on prior theoretical assumptions and empirical evidence, the study 

proposes the following hypotheses: 

➢ H1: Developer experience significantly reduces perceived cognitive 

complexity during code comprehension. 

➢ H2: EWCCM demonstrates stronger correlation with empirical 

comprehension outcomes than unweighted cognitive or structural 

metrics. 

➢ H3: EWCCM maintains predictive consistency under synthetic and 

extended simulation conditions. 

This research advances the state of the art by embedding human variability 

directly into software complexity computation, enabling more nuanced, 

realistic, and actionable assessments of software understandability.  

 

2. Related Work 

Research on software complexity has evolved through multiple theoretical 

and empirical phases, beginning with structural metrics and gradually 

incorporating cognitive and human-centric perspectives. Early foundational 

work by McCabe (1976) and Halstead (1977) introduced complexity metrics 

that quantified control-flow paths and token-level operations. These models 

offered mathematical simplicity and became deeply embedded in industry 

practice; however, their underlying assumptions treated software 

comprehension as a purely structural problem. They did not account for 

human cognitive processes, developer background, or the mental effort 

required to interpret different control structures. To overcome these 

limitations, researchers explored cognitive-oriented complexity measures that 

align more closely with human information processing. Wang (2007) 

advanced this paradigm through the Basic Control Structure (BCS) theory, 

which decomposes software into well-defined cognitive units whose 

interactions reflect the effort required for mental reconstruction. Misra and 
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Akman (2008) empirically validated key cognitive operations and 

demonstrated strong correlations between cognitive complexity and 

maintainability indicators. Chhabra (2011) expanded the cognitive 

framework by incorporating spatial relationships among program elements, 

suggesting that variable interactions and data-flow positioning influence 

comprehension difficulty. Similarly, Rim and Choe (2007) introduced the 

Scope Information Complexity Number (SICN), emphasizing how variable 

lifetime and scope transitions impose cognitive strain. 

More recent studies incorporate machine learning and AI-based 

perspectives to predict comprehension difficulty. Tiwari et al. (2019) and 

Amandeep & Sharma (2021) applied neural models to infer cognitive load 

from structural and semantic cues in source code. Their findings highlight the 

growing recognition that cognitive complexity is multifaceted, involving both 

structural and human-centric factors. Despite these innovations, the explicit 

modelling of programmer experience remains largely unaddressed. Existing 

cognitive metrics either assume uniform cognition or treat experience 

qualitatively, without embedding it into complexity computation. Parallel 

research in empirical software engineering emphasizes the role of developer 

expertise in shaping comprehension strategies. Studies such as Ali et al. 

(2020) and Bavota (2022) consistently show that experienced developers 

exhibit higher comprehension accuracy, form more sophisticated mental 

models, and navigate control-flow structures more efficiently. Cognitive 

Informatics literature reinforces these findings: schema theory and expertise 

research demonstrate that prior exposure to programming paradigms 

significantly influences the cognitive pathways used during problem solving 

and code interpretation (Agrawal et al., 2023; Ben Athiwaratkun et al., 2023). 

Additionally, there is increasing evidence that traditional metrics may be 

overly simplistic or misaligned with actual comprehension difficulty. 

Feitelson (2023) critiques the overreliance on McCabe’s Cyclomatic 

Complexity (MCC), noting that its widespread use persists more from 

historical inertia than empirical validity. Studies evaluating MCC and related 

metrics (e.g., Pantiuchina et al., 2018; Scalabrino et al., 2021) reveal weak 

predictive performance when compared against human comprehension 

measures. Furthermore, research on code smells (e.g., Sharma & Spinellis, 

2018) and structural anti-patterns highlights how readability, architecture, and 

design quality shape cognitive load beyond what traditional metrics capture. 
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Complementary work in education and practice also illustrates that software 

is rarely developed in isolation; developers frequently integrate new code 

with existing systems, libraries, or architectural constraints. Studies by 

Minelli et al. (2015) and Xia et al. (2018) show that developers spend most 

of their time reading and understanding code, with only a small fraction 

dedicated to modification. These findings reiterate the necessity for metrics 

that align with real-world comprehension behaviour (Politowski. et al. 

(2020); Levy & Feitelson, 2021).  

Some studies have explored assessment and skill competitions to evaluate 

software development performance. For instance, Onwudebelu et al. (2013) 

conducted collegiate software exhibitions that assessed student programming 

capabilities across technical and usability dimensions. While not directly 

focused on cognitive complexity, such studies underscore the heterogeneity 

of developer expertise—supporting the need for metrics sensitive to 

experience variations. Quality-oriented frameworks such as SEI CMMI 

emphasize Software Quality Assurance (SQA) and Software Quality 

Management (SQM) as key maturity indicators. Work by Aregbesola & 

Onwudebelu (2019; 2011) revealed low implementation levels of these 

quality areas in Nigerian software industries, suggesting broader challenges 

in aligning process rigor with developer skills and experience. These findings 

indirectly support the need for human-factor integration in software 

evaluation practices. Collectively, the literature indicates three key gaps: 

i. Structural metrics inadequately represent human cognitive effort. 

ii. Cognitive metrics, though more aligned with comprehension, still 

treat all programmers as cognitively uniform. 

iii. Developer experience remains a missing quantitative factor, despite 

empirical evidence of its importance. 

This study addresses these gaps through the Experience-Weighted 

Cognitive Complexity Metric (EWCCM), which embeds quantifiable 

experience as a cognitive modifier. EWCCM complements existing structural 

and cognitive models while providing a more realistic human-cantered 

measure of software comprehension difficulty. 

 

 

 

 



CINEFORUM 
ISSN : 0009-7039 
Vol. 65. No. 4, 2025 

899 

   © CINEFORUM 

3. Theoretical Framework and Model Foundations 

3.1 Cognitive Informatics and Software Comprehension 

The theoretical foundation of this study is grounded in Cognitive 

Informatics, which investigates the internal mechanisms of human 

information processing and their interaction with engineered systems. 

Cognitive Informatics models software comprehension as a mental process 

involving perception, memory, reasoning, and schema construction. When 

developers read source code, they do not interpret it linearly; instead, they 

activate stored cognitive schemas derived from prior experience, 

programming paradigms, and domain knowledge. These schemas 

significantly reduce the cognitive effort required to understand familiar 

structures while amplifying difficulty in unfamiliar contexts. Within this 

framework, program comprehension is viewed as a transformation from 

external symbolic representations (source code) to internal mental models. 

The efficiency of this transformation is influenced not only by structural 

properties of the code but also by the developer’s prior exposure and 

conceptual fluency. This perspective challenges the assumption—implicit in 

many complexity metrics—that all programmers perceive code difficulty 

uniformly. 

3.2 Cognitive Load Theory and Expertise Effects 

Cognitive Load Theory (CLT) further explains how software complexity 

interacts with human cognition. CLT distinguishes between intrinsic load 

(caused by the inherent complexity of the task), extraneous load (caused by 

representation and formatting), and germane load (associated with schema 

construction). In code comprehension, intrinsic load is determined by control 

flow, nesting, and data dependencies, while germane load is heavily 

moderated by programmer experience. Experienced developers rely on well-

established schemas to compress information, effectively reducing working 

memory demands. Novice programmers, in contrast, must process code at a 

more granular level, incurring higher cognitive load even for structurally 

identical programs. Therefore, identical code fragments can induce 

substantially different comprehension effort depending on the reader’s 

experience level, an effect that traditional complexity metrics fail to model. 

3.3 Limitations of Existing Cognitive Complexity Metrics 

Early cognitive complexity models, including those based on Basic 

Control Structures (BCS), successfully incorporated control flow patterns 
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into complexity estimation. These models assign weights to constructs such 

as sequence, iteration, selection, and recursion, reflecting the mental effort 

required to comprehend them. While this approach represents a significant 

advancement over purely structural metrics, it implicitly assumes a uniform 

cognitive interpreter. In practice, however, empirical software engineering 

studies repeatedly demonstrate that experience influences comprehension 

accuracy, time, and error rates. Metrics that ignore this variability are 

therefore limited in their predictive power. Without incorporating experience 

as a first-class parameter, cognitive complexity measures remain incomplete 

representations of real-world comprehension processes. 

3.4 Experience-Weighted Cognitive Complexity Metric (EWCCM) 

To address this gap, this study introduces the EWCCM. The core idea is 

to treat developer experience as a cognitive modifier that adjusts perceived 

complexity rather than as an external or qualitative attribute. 

Let: 

• CC denote the baseline cognitive complexity derived from structural 

and control-flow constructs 

• Fe denote the experience factor, representing developer familiarity, 

exposure, and expertise 

• EWCC denote the experience-weighted cognitive complexity 

 

The proposed formulation is expressed as (question (1)): 

 

  𝐸𝑊𝐶𝐶 =
𝐶𝐶

𝐹𝑒
          (1) 

 

where: Fe ≥ 1 

 

Higher values of Fe correspond to greater experience and familiarity, 

resulting in lower perceived complexity for the same code structure. 

Conversely, when experience is minimal (Fe ≈ 1), EWCC converges to the 

baseline cognitive complexity. This formulation aligns with cognitive theory 

by modelling experience as a compression mechanism that reduces effective 

cognitive load. It also preserves compatibility with existing cognitive metrics 

by using them as input to the weighting process, enabling backward 

comparison and integration. 
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3.5 Research Hypotheses Revisited 

Based on this theoretical framework, EWCCM operationalizes the 

following assumptions: 

i. Cognitive complexity is not solely a property of code but an 

interaction between code and the developer. 

ii. Experience moderates working memory demands and schema 

activation efficiency. 

iii. Quantitative weighting of experience leads to more accurate and 

ecologically valid complexity estimation. 

These assumptions directly support the hypotheses defined in Section 1 

and provide a principled foundation for the empirical and simulation analyses 

presented in subsequent sections. 

 

4. Research Methodology and Experimental Design 

4.1 Research Design 

This study adopts a mixed-method empirical research design, combining 

controlled empirical experimentation with simulation-based validation. The 

design integrates quantitative analysis of program comprehension tasks, 

synthetic data augmentation, and comparative metric evaluation. The 

objective is to assess whether incorporating developer experience into 

cognitive complexity modelling significantly improves the alignment 

between measured complexity and observed comprehension outcomes. The 

study proceeds in four phases: 

i. Baseline cognitive complexity computation using established models. 

ii. Experience factor elicitation based on participant background and task 

familiarity. 

iii. EWCCM computation and comparative analysis. 

iv. Simulation and synthetic data extension to evaluate robustness and 

generalizability. 

This multi-phase structure enhances internal validity while enabling 

scalability beyond the initial dataset. 

4.2 Dataset and Code Snippet Characteristics 

Three representative program samples were used as the empirical basis of 

evaluation (Table 1). The programs were designed to span different structural 

complexity levels while remaining semantically comparable. 
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Table 1. Characteristics of Program Samples 

 

Program LOC Control 

Structures 

Nesting 

Depth 

Estimated 

CC 

P1 60 Sequence, 

Selection 

Low Low 

P2 115 Iteration, 

Selection 

Medium Medium 

P3 180 Nested 

Iteration, 

Conditionals 

High High 

 

Each program implemented functionally equivalent logic but differed in 

complexity due to variation in nesting levels, decision points, and control 

flow interactions. This design isolates cognitive effects attributable to 

structure rather than domain semantics. 

4.3 Participant Selection and Experience Measurement 

Participants were drawn from tertiary-level computer science programs 

and early-career developers (Table 2). To capture variability in experience, 

participants were categorized into three experience levels: 

Table 2. Experience Grouping Criteria 

 

Group Experience Description Experience Factor 

(Fe) 

      Novice ≤1 year programming 

experience 

1.0 

Intermediate 2–4 years experience 1.5 

Experienced ≥5 years experience 2.0 

 

The experience factor (Fe) was derived from a composite score based on: 

(i) Years of programming experience; (ii) Number of programming languages 

known; (iii) Prior exposure to similar programming constructs. This scaling 

preserves interpretability while ensuring monotonic influence on EWCCM. 
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4.4 Experimental Procedure 

Participants were presented with the three program samples under 

controlled conditions. All participants were provided identical instructions 

and time limits to minimize procedural bias. For each program, participants 

were required to: (i) Read and mentally trace program logic; (ii) Answer 

comprehension questions testing functional understanding; (iii) Identify 

outputs for given inputs. The following dependent variables were recorded: 

a. Comprehension accuracy (%) 

b. Time-to-comprehension (seconds) 

c. Error count 

4.5 Baseline Metrics for Comparison 

EWCCM was compared against established metrics to assess relative 

performance: 

a. McCabe’s Cyclomatic Complexity (MCC) 

b. Halstead’s Effort Metric 

c. Baseline Cognitive Complexity (BCS-based) 

4.6 Synthetic Data Generation 

Given the limited size of empirical datasets typical in controlled 

comprehension studies, synthetic data augmentation was employed to 

evaluate metric scalability and stability. Synthetic samples were generated 

by: varying experience factor values within realistic bounds, interpolating 

complexity levels between empirical programs as well as maintaining 

structural constraints consistent with real code. Synthetic data allows 

controlled exploration of edge cases, reduces sampling bias, and enables 

sensitivity analysis without introducing unrealistic patterns. Such 

augmentation is common in empirical software engineering and cognitive 

modelling studies when human-subject datasets are necessarily limited. 

4.7 Statistical Analysis and Evaluation Criteria 

The study employs: Pearson correlation analysis to measure alignment 

between metrics and comprehension outcomes, regression analysis to assess 

the explanatory power of experience, ablation analysis (where the experience 

factor is removed to observe metric degradation), as well as confidence 

intervals and significance testing (α = 0.05). These analyses directly test the 

hypotheses defined in Section 1. 

4.8 Threats to Validity 

To enhance rigor, the following validity threats were considered: 
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i. Internal validity: Controlled program semantics and standardized 

procedures 

ii. Construct validity: Use of multiple comprehension measures 

iii. External validity: Synthetic extension to broader experience 

distributions 

iv. Conclusion validity: Use of appropriate statistical tests 

 

5. Results and Comparative Analysis 

The primary objective of the experimental evaluation is to determine 

whether integrating developer experience into cognitive complexity 

modelling improves the alignment between measured complexity and actual 

software comprehension effort. To this end, EWCCM is evaluated against 

traditional structural metrics and existing cognitive complexity measures 

using both empirical and synthetic datasets. The analysis focuses on 

comprehension accuracy, error rate, and cognitive effort indicators. 

5.1 Empirical Results on Program Comprehension 

Table 3 summarizes participant performance across the three program 

samples, stratified by experience level. The results indicate a monotonic 

improvement in comprehension outcomes with increasing experience across 

all program complexities. Notably, differences between experience groups 

widen as structural complexity increases, underscoring the moderating role of 

experience in cognitive load management. 

Table 3. Empirical Comprehension Outcomes 

 

Program Experience 

Level 

Accuracy 

(%) 

Avg. Time 

(s) 

Error 

Count 

P1 Novice 72 215 4 

P1 Intermediate 85 162 2 

P1 Experienced 93 118 1 

P2 Novice 58 294 6 

P2 Intermediate 74 221 3 

P2 Experience 88 164 1 

P3 Novice 41 368 8 

P3 Intermediate 63 287 5 

P3 Experienced 79 219 2 
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5.2 Metric Computation Results 

Table 4 reports complexity values computed using different metrics. While 

MCC and Halstead metrics increase linearly with code size and control flow, 

they remain invariant across developer profiles. In contrast, EWCCM adapts 

to experience by reducing perceived complexity for experienced 

programmers. 

Table 4. Complexity Metric Outputs 

 

Program  MCC  Halstead 

Effort  

Baseline 

CC 

EWCCM 

(Exp.) 

P1 6 1120 14 7.0 

P1 14 3480 29 14.5 

P3 26 7920 51 25.5 

 

5.3 Correlation Analysis 

Pearson correlation coefficients were computed between metric values and 

observed comprehension difficulty (measured via error count and time). From 

Table 5, EWCCM exhibits the strongest correlation with all empirical 

comprehension measures. This statistically significant improvement (p < 

0.01) supports H2, confirming that experience-weighted modelling better 

reflects real comprehension effort. 

Table 5. Correlation between Metrics and Comprehension Measures 

Metric Accuracy (r) Time (r) Error Count 

(r) 

MCC −0.68 0.71 0.69 

Halstead −0.72  0.74  0.73 

Baseline CC −0.86  0.89  0.87 

EWCCM −0.97  0.96  0.95 

 

5.4 Ablation Study: Effect of Experience Removal 

To assess the impact of experience weighting, an ablation analysis was 

conducted by setting the experience factor for all participants. The resulting 

metric performance reverted to baseline cognitive complexity behaviour, with 

correlation coefficients dropping from 0.97 to 0.86. This degradation 

highlights the critical contribution of experience weighting to metric 
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performance and confirms H1, which posits that experience significantly 

influences cognitive complexity perception. 

5.5 Synthetic Data Simulation Results 

Synthetic datasets were generated by expanding the experience factor 

range and interpolating intermediate complexity values. Figures 1 to 3 

placeholders below correspond to synthetic trend visualizations. 

 

 
Figure 1. EWCCM variation with increasing experience factor 
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Figure 2. Comparison of MCC and EWCCM stability across experience 

levels 

 

 
Figure 3. Sensitivity analysis of EWCCM under synthetic scaling 
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Simulation results demonstrate that: (i) EWCCM decreases monotonically 

with increasing experience; (ii) Structural metrics remain invariant and (iii) 

EWCCM exhibits stable behaviour with no discontinuities. These findings 

support H3, indicating that EWCCM generalizes beyond the empirical 

dataset. 

5.6 Comparative Discussion 

Traditional metrics capture structural difficulty but fail to explain observed 

differences in developer comprehension. Baseline cognitive metrics improve 

prediction accuracy but remain incomplete by neglecting human 

heterogeneity. EWCCM bridges this gap by embedding experience directly 

into computation, yielding superior predictive alignment and theoretical 

consistency. 

These results collectively validate the proposed framework and justify its 

use in human-centric software complexity assessment. Thus, the results 

demonstrate that: 

i. Developer experience significantly moderates perceived code 

complexity. 

ii. EWCCM outperforms traditional and baseline cognitive metrics. 

iii. Synthetic simulations confirm robustness and scalability. 

 

6. Discussion, Threats to Validity, and Practical Implications 

6.1 Discussion of Key Findings 

This study set out to enhance cognitive complexity modelling by explicitly 

incorporating developer experience as a first-class factor. The empirical and 

simulation results consistently demonstrate that experience significantly 

moderates perceived code difficulty. Unlike traditional complexity metrics, 

which treat all developers as cognitively equivalent, the EWCCM adapts its 

assessment to reflect real-world differences in comprehension effort. A 

notable outcome is the strong correlation between EWCCM values and 

observed comprehension indicators such as error rates and task completion 

time. This finding provides empirical support for cognitive informatics 

theory, which posits that human cognitive characteristics must be explicitly 

modelled when analysing information-intensive tasks. The ablation analysis 

further confirms that removing the experience component substantially 

degrades predictive accuracy, reinforcing the necessity of human-cantered 

modelling. 
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Importantly, results indicate that increasing code complexity amplifies the 

divergence in comprehension effort between novice and experienced 

developers. This suggests that experience does not merely reduce absolute 

difficulty but also enables developers to manage cognitive load more 

efficiently under structurally complex conditions. 

6.2 Relation to Existing Work 

Compared to classical structural metrics such as Cyclomatic Complexity 

and Halstead measures, EWCCM provides a more realistic representation of 

software understandability. While earlier cognitive metrics advanced the field 

by acknowledging control flow and architectural effects, they largely 

overlooked developer heterogeneity. EWCCM extends these foundations by 

operationalizing experience as a quantitative modifier rather than an external 

contextual variable. Recent machine learning–based approaches attempt to 

predict comprehension difficulty indirectly; however, they often lack 

interpretability and require large datasets. In contrast, EWCCM retains 

analytical transparency, allowing practitioners to reason about why 

complexity values change and how experience influences them. This balance 

between explainability and empirical accuracy distinguishes EWCCM from 

black-box predictive models. 

6.3 Threats to Validity 

Despite encouraging results, several threats to validity must be considered. 

Internal validity may be affected by the limited number of programs used in 

the empirical study. Although selected programs span increasing levels of 

structural complexity, they may not capture all real-world coding paradigms. 

Additionally, comprehension performance was measured using controlled 

tasks, which may differ from industrial debugging or maintenance scenarios. 

Construct validity concerns arise from the operationalization of developer 

experience. Experience levels were derived from self-reported years of 

programming and exposure to languages, which may not fully represent 

actual expertise. While synthetic data simulation mitigates this limitation by 

exploring a broader range of experience factors, future studies should 

incorporate objective measures such as code review history or proficiency 

tests. External validity is constrained by the academic and semi-professional 

nature of participants. While the results are theoretically grounded, further 

replication across industrial environments and domain-specific software 

systems would strengthen generalizability. Conclusion validity may be 
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influenced by sample size and statistical assumptions. Nonetheless, strong 

correlation coefficients and consistent trends across empirical and synthetic 

datasets indicate robust findings. 

6.4 Practical Implications 

EWCCM has several implications for both research and software 

engineering practice. For project managers, the metric can inform task 

assignment by aligning code complexity with developer experience, 

potentially reducing defects and on-boarding time. For software educators, 

EWCCM offers a principled way to select programming exercises that match 

student proficiency. For tool developers, the metric can be embedded into 

static analysis and IDE-based quality tools to provide personalized 

complexity feedback. Furthermore, EWCCM encourages a shift from one-

size-fits-all complexity assessment toward adaptive, human-aware software 

analytics. Such an approach aligns with modern development practices that 

emphasize developer experience, productivity, and sustainable software 

evolution. 

This combined discussion reinforces the central contribution of the study: 

cognitive complexity assessment must explicitly account for the human 

dimension to remain meaningful. By incorporating experience into 

complexity computation, EWCCM advances both theoretical understanding 

and practical utility. Future research should validate the metric across larger 

industrial datasets, explore automated calibration of experience factors, and 

investigate integration with empirical defect prediction and maintainability 

models. 

 

7. Mathematical Model, Research Hypotheses, and Formal 

Definition of EWCCM 

7.1 Motivation for a Formal Model 

Existing software complexity metrics typically rely on structural or 

syntactic properties of source code, implicitly assuming homogeneous 

cognitive capabilities among developers. However, empirical observations 

and cognitive informatics theory demonstrate that program comprehension is 

mediated by individual experience. Consequently, a formal mathematical 

model is required to explicitly integrate experience into complexity 

computation, thereby improving explanatory and predictive power. 
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7.2 Baseline Cognitive Complexity Model 

Let a program be composed of Basic Control Structures (BCS), such as 

sequence, selection, iteration, and recursion. Following established cognitive 

complexity theory, the baseline cognitive complexity CC(P) is defined as 

(question (2)): 

 

CC(P) = ∑ 𝑊𝑘 𝑥 𝑁𝑘𝑛
𝑘=1                    

(2) 

 

Where: Wk represents the cognitive weight associated with the BCS; Nk 

denotes the number of occurrences of that structure in. This formulation 

captures control flow complexity but does not account for human variability. 

7.3 Experience Factor Definition 

To address this limitation, an experience factor Fe is introduced. Let be a 

normalized scalar reflecting the developer’s programming experience 

(equation (3)):  

 

    Fe ϵ (0, 1]                                

(3) 

 

where lower values correspond to higher expertise. The factor may be 

computed as (equation (4)): 

 

     𝐹𝑒 =
1

{1+log(1+𝐸)}
                        

(4) 

and: 

 

E denotes years of relevant programming experience or an equivalent 

proficiency score. 

This logarithmic formulation captures diminishing cognitive gains with 

increasing experience. 

7.4 Experience-Weighted Cognitive Complexity Metric (EWCCM) 

The proposed EWCCM is formally defined as (equation (5)): 
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     EWCCM (P, Fe) = CC(P) x Fe                                 

(5) 

 

This formulation ensures that structural complexity is preserved while 

allowing perceived complexity to adapt based on the developer’s experience 

profile. 

7.5 Research Hypotheses 

Based on the model formulation, the following hypotheses are tested: 

 

H1: Developer experience significantly moderates perceived cognitive 

complexity (equation (6)). 

 

    𝐻1:
Ѳ𝐸𝑊𝐶𝐶𝑀

Ѳ𝐹𝑒
 ≠ 0                

(6) 

 

H2: EWCCM exhibits a stronger correlation (r) with comprehension effort 

than traditional metrics (equation (7)). 

 

    | r(EWCCM) | ˃ | r(MCC) |, | r(Halstead) |             

(7) 

 

H3: EWCCM remains stable and monotonic across extended experience 

ranges under simulation. 

7.6 Theoretical Properties 

The proposed metric satisfies the following properties: 

i. Monotonicity: increases with increasing structural complexity. 

ii. Experience Sensitivity: decreases as experience increases. 

iii. Scalability: Metric values scale linearly with control structure 

growth. 

iv. Interpretability: Each term has a clear cognitive meaning. 

 

These properties ensure both mathematical robustness and practical 

relevance. 
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7.7 Simulation and Objective Representation 

Simulation experiments were conducted by varying across a continuous 

range while holding constant. Results demonstrate smooth, monotonic decay 

in complexity values as experience increases. Unlike structural metrics, 

EWCCM adapts dynamically without introducing instability or 

discontinuities. This confirms that the proposed metric performs the actual 

simulation of the research objective, rather than relying solely on descriptive 

performance parameters. By formalizing cognitive complexity as a function 

of both structural properties and developer experience, EWCCM provides a 

mathematically grounded and empirically justified advancement over 

existing metrics. 

 

8. Comparative Evaluation and Statistical Significance Analysis 

8.1 Evaluation Framework 

To rigorously assess the effectiveness of the proposed Experience-

Weighted Cognitive Complexity Metric (EWCCM), a comparative 

evaluation was conducted against representative structural and cognitive 

complexity metrics, namely McCabe’s Cyclomatic Complexity (MCC), 

Halstead Effort, and a baseline Cognitive Complexity (CC) model without 

experience weighting. The evaluation framework aligns metric outputs with 

empirical indicators of comprehension difficulty, including task completion 

time, comprehension accuracy, and error frequency. Both empirical and 

synthetic datasets were considered to ensure robustness and generalizability. 

8.2 Comparative Metrics Analysis 

Table 6 presents a consolidated comparison of metric behaviour across 

increasing program complexity levels. 

Table 6. Comparative Metric Sensitivity 

Metric  Experience 

Awareness  

Correlation 

with 

Accuracy 

Adaptivity 

 

MCC  No  Moderate None 

Halstead 

Effort 

No Moderate   None 

Baseline CC  Partial  High  Limited 

EWCCM  Yes  Very High  Strong 
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Traditional metrics remain insensitive to developer experience and therefore 

fail to explain observed comprehension variability. EWCCM, in contrast, 

explicitly adapts complexity values, resulting in stronger alignment with 

human performance. 

8.3 Statistical Significance Testing 

To establish whether improvements offered by EWCCM are statistically 

meaningful, correlation coefficients between metric outputs and 

comprehension indicators were subjected to significance testing. A paired t-

test comparing EWCCM and baseline CC correlations yielded: 

 

    t(8) = 5.42, p < 0.01                                 

(8) 

 

Similarly, ANOVA analysis across experience groups demonstrated 

statistically significant differences in perceived complexity for EWCCM (p < 

0.01), whereas MCC showed no meaningful differentiation. These results 

confirm that EWCCM provides statistically superior explanatory power, 

thereby addressing concerns regarding result significance. 

8.4 Comparative Visualization and Trend Analysis 

Empirical and synthetic trend analyses consistently show that structural 

metrics produce flat or step-wise complexity profiles across experience 

levels. In contrast, EWCCM generates smooth, monotonic trends that align 

closely with empirical comprehension effort. This behaviour demonstrates 

that EWCCM not only captures complexity magnitude but also reflects 

cognitive adaptability, a dimension absent from traditional metrics. From a 

data analytics standpoint, EWCCM improves both predictive accuracy and 

feature relevance. By incorporating experience as an explicit variable rather 

than a latent factor, the model reduces unexplained variance and enhances 

interpretability. This positions EWCCM as a suitable candidate for 

integration into broader analytics pipelines, such as maintainability 

assessment, defect prediction, and developer workload optimization. The 

comparative and statistical analyses demonstrate that: 

i. EWCCM significantly outperforms existing metrics (Objective 

01). 

ii. Experience weighting produces measurable improvements in 

prediction accuracy (Objective 02). 
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iii. Simulation results meaningfully represent real-world cognitive 

effects (Objective 03). 

 

Thus, the evaluation confirms that the proposed method meets its stated 

research objectives. EWCCM achieves consistent improvements across all 

evaluation dimensions.  

 

9. Conclusion and Future Work 

This paper introduced the Experience-Weighted Cognitive Complexity 

Metric (EWCCM) as a human-cantered approach to assessing software 

complexity and understandability. Unlike traditional structural or syntax-

based metrics, EWCCM explicitly integrates developer experience into 

cognitive complexity computation, addressing a long-standing limitation in 

software measurement research. Through formal mathematical modelling, 

empirical evaluation, synthetic simulation, and comparative statistical 

analysis, the study demonstrated that developer experience plays a significant 

role in moderating perceived code complexity. Results showed that EWCCM 

exhibits a substantially stronger correlation with comprehension indicators—

such as accuracy, error rate, and task completion time—than established 

metrics including Cyclomatic Complexity and Halstead measures. The 

ablation analysis further confirmed that removing the experience component 

leads to a marked decline in predictive accuracy, underscoring the necessity 

of experience-aware modelling. By grounding the proposed metric in 

cognitive informatics theory while retaining interpretability and analytical 

transparency, this work bridges the gap between human factors research and 

practical software engineering metrics. The findings challenge the implicit 

assumption of cognitive homogeneity embedded in many existing metrics and 

provide empirical justification for adaptive, developer-aware complexity 

assessment. The main contributions of this work are threefold: 

a. Theoretical Contribution: A formalized cognitive complexity model 

that explicitly incorporates developer experience as a quantitative 

modifier. 

b. Methodological Contribution: A rigorous evaluation framework 

combining empirical data, synthetic simulation, and statistical 

significance testing. 
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c. Practical Contribution: A metric suitable for integration into software 

quality tools, educational environments, and project management 

workflows. 

While the results are promising, several avenues for future research remain 

open. 

 

First, large-scale industrial validation across diverse software domains and 

organizational contexts would strengthen the external validity of EWCCM. 

Incorporating real-world maintenance tasks, debugging activities, and 

collaborative development settings could provide deeper insight into practical 

applicability. Second, future studies could explore automated calibration of 

the experience factor using objective indicators such as commit history, code 

review outcomes, or machine-learning-derived proficiency scores. This 

would reduce reliance on self-reported experience measures and further 

enhance construct validity. Third, extending EWCCM to account for 

additional human factors such as language familiarity, domain expertise, and 

cognitive style, could yield a more comprehensive cognitive complexity 

framework. The integration of EWCCM into predictive models for defect 

proneness and maintainability also represents a promising research direction. 

Finally, embedding EWCCM into IDEs and static analysis tools would enable 

real-time, personalized complexity feedback, supporting more sustainable 

and human-aware software development practices. 

This work advances the state of the art in software complexity 

measurement by reaffirming that software is written for humans, not just 

machines. By explicitly modelling human experience, EWCCM offers a more 

realistic, reliable, and actionable approach to understanding software 

complexity and lays the foundation for future human-centric software 

analytics. 
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