
CINEFORUM
ISSN: 0009-7039
Vol. 63. No. 3, 2023

88

 © CINEFORUM

Self-Healing Software: Leveraging AI for Automated Bug Detection and Real-
Time Code Correction

Gopinath Kathiresan
Senior Quality Engineering Manager, CA, USA

Email - Gopi.385@gmail.com

Abstract
The emerging software engineering paradigm of self-healing software makes use of artificial
intelligence (AI) to allow systems identify and automatically diagnose and fix software failures
independently. Current debugging and maintenance processes openly depend on people yet the
manual interventions limit their effectiveness on extensive and dynamic systems. The integration
of machine learning algorithms alongside deep learning models along with natural language
processing techniques through AI-driven self-healing software helps to boost software reliability
and security. This paper examines the main elements of self-healing software through static and
dynamic bug detection systems and live code repair processes as well as artificial intelligence that
helps create software solutions. The article examines the performance issues which occur with AI-
powered self-healing systems including false positives and computational burden and security
vulnerabilities. This paper identifies upcoming developments which cover DevOps workflow
integration with AI systems and explains how advanced AI techniques improve debugging
performance through improved explanations and how self-healing AI can apply to big distributed
systems. This article investigates software maintenance transformations under AI along with
automated debugging and real-time error correction changes.
Keywords: Self-healing software, AI-driven debugging, automated bug detection, explainable AI,
DevOps integration, anomaly detection, reinforcement learning, predictive software maintenance.

1. Introduction
1.1 Overview of Software Reliability Challenges
Modern digital systems require software reliability as their essential pillar for delivering functional
operations. Businesses together with industries that depend on software-based systems witness an
increasing financial impact from software failures. Tihanyi et al. (2023) indicate software errors
create financial losses and safety breaches along with severe operational interruptions when they
affect mission-sensitive systems like healthcare facilities and financial institutions and
autonomous vehicle technologies. Complex software environments operate inefficiently and costly
through manual intervention in traditional debugging processes which becomes time-consuming.
Software reliability encounters its main challenge from the excessive complexity found in modern
applications. The integration of software systems with cloud services edge computing along with
IoT devices increases their likelihood of faults because of their expanding size (Johnphill et al.,

CINEFORUM
ISSN: 0009-7039
Vol. 63. No. 3, 2023

89

 © CINEFORUM

2023). Shareware development can introduce problems because of writing mistakes and safety
holes between different software code components. Software updates that run continuously
produce new risks because intended bug fixes through patches sometimes generate additional
issues (Oyeniran et al., 2023). The speed of software releases managed through DevOps automated
pipelines creates additional challenges for debugging because there is limited opportunity for
extensive manual testing (Tyagi, 2021). The urgent situations require automated solutions to detect
and fix software faults through a reduced involvement of human operators. Digital systems
including self-healing software emerged due to the entry of advanced AI and ML tools to boost
system reliability and resilience as described in Sarda et al., 2023.

1.2 The Concept of Self-Healing Software
Auto-detecting software failures and conducting diagnostics together with automated repairs form
the essential traits of self-healing software. The biological practice of self-healing motivated this
software approach (Monperrus, 2018). The application of self-healing capability in software
domains enhances software systems' operational resilience by enabling them to operate through
faults.

Figure 1: Self-Healing Software system

Self-healing software applications operate through proactive monitoring combined with anomaly
detection and automated debugging functions and real-time correction methods. These systems
apply ML algorithms together with formal verification methods and large language models
(LLMs) to discover failure patterns and forecast system breakdowns beforehand (Tihanyi et al.,
2023). Deep learning models utilize their ability to analyze large volumes of software logs in order
to identify striking patterns that indicate hidden software bugs according to Sarda et al., 2023.
Software achieves ongoing improvement of its auto-repair capabilities through reinforcement
learning which lets the system learn from previous instances of failure (Johnphill et al., 2023).

CINEFORUM
ISSN: 0009-7039
Vol. 63. No. 3, 2023

90

 © CINEFORUM

Self-healing software demonstrates its main benefit as it runs in real-time to perform automated
repairs which reduce system downtime. This approach delivers excellent benefits for systems
operating in cloud computing and edge networks as well as cyber-physical systems because system
failures result in significant impacts (Adeniyi et al., 2023). System reliability advances alongside
a reduction in operational costs and maintenance expenses through self-healing software compared
to conventional debugging methods that depend on lengthy manual examinations.

1.3 Role of AI in Automating Bug Detection and Correction
The application of artificial intelligence in software maintenance now supports automatic search
and instant correction of software defects. The current software debugging approaches that depend
on human experts for reviews and static analysis work without AI show two main drawbacks:
excessive human effort and potential mistakes (Todorov, 2022). Through machine learning
algorithms AI-driven solutions can identify software defects before diagnosing them and repairing
these issues autonomously.
AI delivers its most important advantage to self-healing software through anomaly detection
capabilities. System logs combined with application performance metrics and code execution
traces undergo analysis by AI models to detect failue-indicating patterns (Pan et al., 2023). GPT-
based architectures among Large language models have acquired vast code data to understand
programming errors and provide improved suggestions for correction (Tihanyi et al., 2023). Nature
language processing enables AI tools to process error messages to deliver meaningful code
structure understanding that results in instant context-based solution recommendations (Sarda et
al., 2023).
AI strengthens the capabilities of automated debugging by applying reinforcement learning while
using evolutionary algorithms. The approaches let software study previous bugs so it can enhance
its capability to fix itself automatically with time (Johnphill et al., 2023). Advanced debugging
systems powered by AI create automatic code fixes which speed up the need for manual code
correction (Monperrus, 2018). The technology serves DevOps environments well because of their
need for fast software development that requires automated fault management systems (Tyagi,
2021). Developers who implement AI technology in their software maintenance operations are
able to stop systems from down time and lower human interaction roles while protecting software
security. The ongoing advancements in AI-based bug identification and fix automation systems
need to address three main obstacles that will be examined in detail in this article - false positives,
additional computation needs, and security-related issues.

1.4 Importance of Real-Time Code Correction in Modern Software Development
Real-time code correction stands as a core requirement instead of optional comfort in current
software development operations. Decreased service interruptions become mandatory because
software teams need to monitor and resolve problems right away when CI/CD pipelines,

CINEFORUM
ISSN: 0009-7039
Vol. 63. No. 3, 2023

91

 © CINEFORUM

microservices architectures, and cloud-native applications become more prevalent (Oyeniran et
al., 2023).
The first advantage of real-time code correcting systems involves the reduction of operational
downtime for systems. Traditional software maintenance presents the challenge of needing weeks
or days to fix bugs since developers must perform manual debugging and develop patches until
testing completion (Tihanyi et al., 2023). AI-driven self-healing mechanisms apply real-time
automated patches and corrective measures through their AI algorithms to ensure operational
systems in the face of failures (Sarda et al., 2023). Self-healing systems possess critical importance
in high-availability systems especially when implemented for banking applications or cloud
services or industrial automation and prevent time-consuming operational interruptions that
generate substantial financial damages.

1.5 Objectives of the Article
The article evaluates AI-driven self-healing software through a detailed study of automatic bug
detection with real-time code repair and present technology limitations and upcoming
developments. This exploration details AI detection systems with anomaly detection and machine
learning-processed code evaluation and pattern recognition techniques whereas AI-generated
patches and NLP-controlled code interpretation alongside reinforcement learning self-fix
capability represent real-time correction approaches. The article explores major reliability
restrictions that affect self-healing systems while discussing three main obstacles: false positives,
security threats and processing complexity. The article presents future perspectives on AI-driven
debugging systems and explainable AI approaches in software maintenance and their potential
trends in DevOps workflows. The article demonstrates how AI transforms software maintenance
together with automated debugging and real-time error correction functions through its analysis of
essential areas.

2. Understanding Self-Healing Software
2.1 Definition and Key Characteristics
The term self-healing software describes programming systems which detect fault conditions and
diagnose resources to fix themselves without requiring human assistance. Self-healing software
operates through its capability to detect anomalies in systems to deliver live corrective measures
that reduce system functionality disruptions (Monperrus, 2018). The combination of artificial
intelligence (AI) and machine learning (ML) methods together with formal verification joins
forces to track software reliability through self-healing software (Tihanyi et al., 2023). Self-healing
software implements continuous monitoring and automated reliability enhancement using these
advanced techniques instead of manual debugging practices.

CINEFORUM
ISSN: 0009-7039
Vol. 63. No. 3, 2023

92

 © CINEFORUM

Figure 2: The Concept of Self-Healing Software

Self-healing software implements several essential features which let it automatically discover
software flaws along with their causes and execute their remediation thus achieving optimum
reliability as well as minimal system interruptions. Autonomous fault detection represents a
fundamental feature because this system analyzes software performance metrics and log data to
find potential failures before they become critical issues according to Sarda et al. (2023).
Automated diagnosis applies AI-driven pattern recognition together with anomaly detection
techniques to analyze software malfunctions and detect their precise sources while enhancing
accuracy (Johnphill et al., 2023). Real-time code correction provides the system with the ability to
detect errors alongside the functionality to create and automatically deploy dynamic fixes that
minimize system interruption (Adeniyi et al., 2023). Self-healing software gains proficiency
through time by learning from failed experiences and enhancing its error-resolution methods
through reinforcement learning combined with evolutionary algorithms (Pan et al., 2023). The
implemented method prevents the recurrence of failures and strengthens system operational
durability. Self-healing software decreases human involvement while it automates repair tasks
together with maintenance operations to shorten development timelines and lower support
responsibilities (Oyeniran et al., 2023). The combination of characteristics found in self-healing

CINEFORUM
ISSN: 0009-7039
Vol. 63. No. 3, 2023

93

 © CINEFORUM

software represents a transformative breakthrough in contemporary software engineering which
provides continuous system protection against failures in modern complex computing systems.

2.2 Historical Evolution of Self-Healing Systems
The development of self-healing software as a concept occurred during the past several decades
while researchers applied advancements made in autonomic computing and artificial intelligence
as well as fault-tolerant systems. The concept of software self-healing originated from fault-
tolerant computing research in the 1960s and 1970s which employed redundancy systems for
improving system reliability (Munk, 2016). These initial approaches used hardware-based
methods that made them ineffective towards modern software-defined systems.
The 1990s brought autonomic computing which led to the development of autonomous systems
which perform self-configuration, self-optimization, self-protection and self-healing (Monperrus,
2018). The Autonomic Computing Initiative (ACI) launched by IBM in 2001 became instrumental
in determining how self-healing software should develop through its support for intelligent
systems which could identify and respond to failures (Tihanyi et al., 2023).
Self-healing software experienced a major breakthrough in the 2010s when machine learning and
artificial intelligence appeared because these technologies enabled predictive analytics and
automated debugging as well as real-time anomaly detection (Sarda et al., 2023). Self-healing
software attributes additional healing functions through the merging of AI-based static and
dynamic code examination tools with large language models which enable software to detect errors
automatically (Pan et al., 2023).
Self-healing software technology currently operates extensively throughout cloud computing and
DevOps practices and cybersecurity applications and cyber-physical systems while active research
aims to produce improved versions with better decision accuracy and execution efficiency and
adaptability (Adeniyi et al., 2023).

2.3 Comparison with Traditional Debugging and Software Maintenance
Manual traditional approaches to software debugging and maintenance have existed as resource-
intensive reactive manual activities in the past. The standard methods used by developers for defect
identification and software correction include static code analysis and manual code reviews and
regression testing (Todorov, 2022). Traditional debugging procedures used to work well but
encounter multiple problems in fast-paced programming development today.

CINEFORUM
ISSN: 0009-7039
Vol. 63. No. 3, 2023

94

 © CINEFORUM

Key Differences Between Traditional Debugging and Self-Healing Software
Feature Traditional Debugging Self-Healing Software

Error Detection
Manual testing, static/dynamic
analysis, debugging tools

AI-driven anomaly detection and
predictive analytics

Correction Method Requires developer intervention
for fixing errors

Automated bug fixing and real-
time code correction

Response Time Reactive – fixes are applied only
after failure occurs

Proactive – detects and resolves
errors before they cause failures

Scalability Difficult to scale for large
codebases and dynamic
applications

Easily scalable with AI and
machine learning

Operational
Efficiency

Time-consuming and labor-
intensive

Reduces developer workload and
accelerates software delivery

Adaptability Fixed debugging techniques,
limited learning ability

Continuously learns and improves
from past errors

The main disadvantage of traditional debugging involves needing skilled human operators. The
debugging procedure for large and complex software systems takes extensive amounts of time and
effort which triggers delays and higher maintenance expenses (Oyeniran et al., 2023). Self-healing
software operates with automatic error recognition and problem correction functionality that
minimizes human-driven manual intervention thus ensuring continuous system dependability
according to Johnphill et al. (2023).
Traditional debugging practices provide no advance solutions. System developers respond to bugs
only after they become active issues in the system environment resulting in downtime alongside
security threats (Monperrus, 2018). Self-healing software implements machine learning
algorithms to forecast failures within the system thus preventing their occurrence while enhancing
software resilience per Tihanyi et al. (2023).
The real-time feature of self-healing software becomes extremely useful in CI/CD and DevOps
environments. The fast-moving deployments in current software development environments
challenge traditional debugging tools but AI-powered self-healing systems integrate smoothly with
testing pipelines as well as monitoring platforms and security infrastructure (Tyagi 2021).

CINEFORUM
ISSN: 0009-7039
Vol. 63. No. 3, 2023

95

 © CINEFORUM

3. The Role of AI in Self-Healing Software
Self-healing software achieved significant advancement through the inclusion of Artificial
Intelligence (AI) which enabled the system to autonomously search for bugs and anomalies and
automatically make corrections. AI systems apply machine learning (ML) together with deep
learning (DL) patterns for real-time software issue identification which enables them to provide
automatic corrections requiring low human involvement. Software reliability together with
security and operational efficiency have experienced notable advancement because of these
developments (Tihanyi et al., 2023).

Figure 3: Self-healing software generation

3.1 Machine Learning Algorithms for Bug Detection
Machine learning algorithms serve as essential tools to detect and forecast software bugs that
would trigger system breakdowns. Training algorithms with extensive historical bug reports allows
them to identify faulty code patterns by analyzing parentheses (Johnphill et al., 2023). A
combination of analyzing code structure together with execution flow and historical debugging

CINEFORUM
ISSN: 0009-7039
Vol. 63. No. 3, 2023

96

 © CINEFORUM

data enables ML models to detect repeated software defects and detect potential vulnerabilities
(Oyeniran et al., 2023).
Some of the most commonly used ML algorithms in bug detection include:

3.1.1 Supervised Learning Models: Operation of decision trees and support vector
machines (SVMs) alongside random forests depends on training with datasets that
include software defects with their labels. After completion of training the system
operates autonomously to categorize new computer code segments based on their bug
status (Todorov, 2022).

3.1.2 Unsupervised Learning Models: The combination of clustering methods (including
k-means, DBSCAN) as well as autoencoders enables the identification of previously
unidentified software vulnerabilities by recognizing abnormal programming patterns
(Monperrus, 2018).

3.1.3 Reinforcement Learning (RL): The software error detection and correction strategies
developed through RL-based techniques learn and adapt their decision-making
processes based on continuous feedback over time (Adeniyi et al., 2023).

AI-based bug search programs successfully operate inside DevOps pipelines, static code
evaluation tools, and cybersecurity framework structures to increase the speed and precision of
software fixing operations (Tyagi 2021).

3.2 Deep Learning for Anomaly Detection in Code
Deep Learning (DL) has shown itself as a robust analytic system that examines complex codes and
runtime activities to discover software defects. The debug method based on rules cannot compete
with DL models for their ability to extract code features automatically from raw data and discover
errors that push beyond human understanding (Sarda et al., 2023).
Self-healing software implements several powerful deep learning techniques to achieve its
operation as follows:

3.2.1 Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM)
Networks: Sequential data processing models provide exceptional value for software
log analysis and memory leak detection with anomaly identification (Pan et al., 2023).

3.2.2 Convolutional Neural Networks (CNNs): The CNN architecture started as an image
recognition tool but researchers applied it to find duplicated and defective code blocks
and classify vulnerability types (Lo, 2023).

3.2.3 Transformer-Based Models: The automation field utilizes large language models
(LLMs) including GPT, BERT, and CodeBERT to create computer code and identify
anomalies and fix bugs in real-time (Tihanyi et al., 2023).

3.3 AI-Driven Pattern Recognition in Software Errors
Pattern recognition operates as a vital ingredient of artificial intelligence self-healing systems since
they enable prediction and identification of software defects based on stored data patterns.

CINEFORUM
ISSN: 0009-7039
Vol. 63. No. 3, 2023

97

 © CINEFORUM

Artificial intelligence uses pattern detection methods that incorporate statistical algorithms with
clustering methodologies and neural networks to identify repeat software problems before
proactively addressing them (Monperrus, 2018).
Self-healing software relies on AI to automatically find repetitive problems that trigger automated
solutions which sustain software performance. AI models operate through automated log analysis
to process large system logs and error messages and debugging reports thus enabling them to spot
new failure patterns and potential anomalies (Adeniyi et al., 2023). Code similarity detection as a
tool scans new code modification against previously detected defects which allows developers to
advance their security approach by fixing known vulnerabilities (Sarda et al., 2023). AI-based
predictive maintenance uses self-healing software that predicts upcoming system failures through
analysis of software behavioral patterns from the past which allows users to prevent failures from
becoming worse (Johnphill et al., 2023). AI models help conduct automated code refactoring
through structural code analysis that creates optimal refactoring strategies to prevent future
program errors (Tyagi, 2021). Self-healing software employs its pattern recognition ability to
identify real software bugs effectively and boost detection efficiency while preventing invalid bug
reports (Oyeniran et al., 2023).

4. Automated Bug Detection: Techniques and Approaches
Software engineering now heavily depends on automated bug detection primarily through AI-
driven methods which provide better results than conventional debugging practices. AI-driven
analysis systems use static code static analysis and dynamic analysis alongside runtime monitoring
and reinforcement learning for efficient real-time identification and resolution of software bugs
(Johnphill et al., 2023). The implemented methods strengthen software dependability as well as
protection features which decreases manual debugging workloads (Tihanyi et al., 2023).

4.1 Static Code Analysis Using AI
Analysis of static code occurs when developers inspect program lines repeatedly to locate potential
security holes as well as logic mistakes and standard compliance breaches. The static analysis tools
that use traditional predefined rules can enhance accuracy through the application of machine
learning, deep learning and natural language processing (NLP) models according to Monperrus
(2018).
The application of Artificial Intelligence techniques to static code analysis detects source code
issues during development before software execution occurs. AI uses machine learning classifiers
as a common practice for analyzing new code by training models derived from decision trees,
SVMs, and neural networks on labeled source code databases to determine if new code possesses
issues (Todorov, 2022). Pre-trained large language models such as CodeBERT, GPT and
GraphCodeBERT perform automatic code analysis through transformer-based language models to
detect inconsistencies as well as make suggestions for enhancement (Pan et al., 2023). The
combination of AI algorithms generates abstract syntax trees (ASTs) and control-flow graphs

CINEFORUM
ISSN: 0009-7039
Vol. 63. No. 3, 2023

98

 © CINEFORUM

(CFGs) using graph-based analysis to find dead code and race conditions and logical errors within
complex programming structures (Sarda et al., 2023). The static analysis toolkit DeepCode along
with Amazon CodeGuru exhibits better accuracy in detection coupled with lower false alarms and
greater programmer efficiency than standard rule-dependent systems (Benitez & Serrano, 2023).
Modern software development requires AI to be an essential element due to its power in making
code both more reliable and efficient.

4.2 Dynamic Analysis and Runtime Monitoring
The dynamic analysis process executes programs while scanning for runtime errors together with
performance issues and security vulnerabilities which static analysis passes in its static state. The
AI-powered tools available for runtime monitoring serve dynamic analysis by presenting ongoing
software run behavior observation with anomaly detection abilities that trigger automated
healthcare interventions (Johnphill et al., 2023). The deep learning technique for anomaly
detection enables the use of recurrent neural networks (RNNs) and Long Short-Term Memory
(LSTM) models to analyze runtime logs and execution traces for detecting abnormal behavior
(Sarda et al., 2023). The predictive failure analysis method analyzes machine learning models to
review execution pattern histories for failure predication which helps developers intervene
proactively (Adeniyi et al., 2023). The AI-powered fuzzers of AI-augmented fuzz testing create
random test inputs to expose live vulnerabilities simultaneously with their reinforcement learning
(RL)-powered test case selection method (Tihanyi et al., 2023). The dynamic analysis capabilities
of AI receive detailed demonstration through Microsoft's IntelliTest that applies code execution
patterns to produce autonomous test cases for better bug detection and test coverage results (Roy
& Tiwari, 2020). The implementation of AI technology in dynamic analysis improves software
dependability by finding and resolving problems which static analysis tools would normally miss.

4.3 Reinforcement Learning for Predictive Bug Detection
Reinforcement learning functions as a machine learning subfield that enables AI agents to discover
their best debugging behavior through environmental interactions which yield feedback using
reward systems or punishment structures. Software engineering uses RL-based models to detect
bugs in advance through self-operated pattern matching of software defects while providing
optimal repair suggestions (Johnphill et al., 2023). Rephrase: The key RL application for bug
detection involves creating automated debugging agents that utilize previous debugging results to
optimize their selected bug-fixing methods throughout software maintenance processes (Oyeniran
et al., 2023). Systems enhanced by RL agents produce improved test case generation through their
ability to prioritize testing the critical code paths thus strengthening software quality assurance
measures while reducing unidentified vulnerabilities (Benitez & Serrano, 2023). Self-learning AI
agents employed in adaptive error correction systems continue to develop error-handling policies
through time which improves system self-healing capabilities and enhances overall resilience
(Sarda et al., 2023). The Google-based DeepMind AlphaCode system demonstrates RL application

CINEFORUM
ISSN: 0009-7039
Vol. 63. No. 3, 2023

99

 © CINEFORUM

in software engineering through its analysis and debugging of source code while boosting
development speed and cutting manual test times (Pan et al., 2023). RL-based bug detection and
correction applications currently transform standard software debugging to make them smarter and
self-operational as well as more efficient.

4.4 Case Studies of AI-Powered Bug Detection Systems
Multiple entities within research projects alongside organizations have applied AI-based bug
detection systems within their DevOps and software engineering pipelines which displayed clear
advantages.

Figure 4: CBR approach to self-healing

CINEFORUM
ISSN: 0009-7039
Vol. 63. No. 3, 2023

100

 © CINEFORUM

Case Study 1: Facebook’s Sapienz
Sapienz represents an AI-based automated testing tool developed by Facebook which finds crashes
and bugs in mobile applications before they reach market. The testing efficiency of software
development receives substantial enhancement from Sapienz through its implementation of
machine learning algorithms which detects early-stage defects. Its detection of software bugs
surpasses human testing abilities because it proves 33% more effective than traditional manual
testing approaches according to Lo (2023). Sapienz optimizes developer productivity through
automated creation of test cases that enables teams to undertake more sophisticated debugging
responsibilities. Sapienz makes defect resolution more efficient which results in reduced
application failures prior to deployment because it speeds up bug resolution (Lo, 2023). Through
its operations Sapienz demonstrates AI software testing tools improve quality assurance practices
to create mobile applications that deliver better reliability and resilience.
Case Study 2: Microsoft’s DeepCode
DeepCode uses its artificial intelligence system and deep learning models that analyze billions of
program lines to make software more secure and higher in quality. Real-time bug detection stands
as a fundamental feature of DeepCode because it detects coding mistakes during development
automatically and provides developers with remedies to fix issues promptly. DeepCode
implements security improvements through continuous vulnerability detection of SQL injections
and memory leaks because these represent significant vulnerabilities to software integrity (Benitez
& Serrano, 2023). DeepCode enables developers to use their current development tools through
IDE integration so they can instantly receive feedback and enhance their code quality during their
standard development process. DeepCode uses deep learning integration with static code analysis
to optimize software debugging procedures while strengthening the overall software reliability
framework.
Case Study 3: Google’s ClusterFuzz
The AI-powered system ClusterFuzz from Google functions as a self-operated fuzz testing
platform for identifying security weaknesses in extensive software codebases. The application of
machine learning methods within ClusterFuzz helps the system pinpoint security vulnerabilities
which endanger software integrity. Reinforcement learning acts as an optimized system for test
case selection which directs the system to target critical areas in the codebase for testing (Tihanyi
et al., 2023). The detection abilities of ClusterFuzz improve alongside the time because the system
develops more precise security threat detection algorithms which results in only real threats being
flagged for analysis. The innovative bug detection capabilities of AI systems deliver substantial
positive effects on contemporary software engineering by eliminating extensive manual debugging
work while creating superior code with robust security features. AI-driven technology represented
by ClusterFuzz continues to revolutionize both automated software testing and vulnerability
assessment platforms.

CINEFORUM
ISSN: 0009-7039
Vol. 63. No. 3, 2023

101

 © CINEFORUM

5. Real-Time Code Correction Using AI
5.1 Automated Debugging and Self-Correcting Code
AIs through automated debugging systems analyze software code which leads to enhanced
reliability by fixing errors without needing human involvement. These systems use code execution
analysis to detect exceptional events and immediately apply corrective actions which reduces
system downtime and bolsters software output (Johnphill et al., 2023). Machine learning models
integrated with self-correcting code mechanisms improve their debugging approaches because
they use previously detected errors to continually develop more precise adaptive error resolution
techniques (Adeniyi et al., 2023).
5.2 AI-Driven Patch Generation and Deployment
The automated functionality of AI-powered patch generation assists with vulnerability
identification while producing fixes that decreases the overall duration of software maintenance
tasks. Previous bug reports and patches examined by machine learning models help predict or
execute automatic corrections which lowers security threats according to Sarda et al., 2023. The
deployment of these patches happens smoothly to protect the software operations from disruptions
(Oyeniran et al., 2023).
5.3 Natural Language Processing in Code Understanding and Fixing
AI-driven code correction relies heavily on natural language processing (NLP) technology to
process program languages like how human-readable text is processed. AI models with NLP
training capabilities enable bug report analysis along with developer comment interpretation to
create applicable problem solutions (Pan et al., 2023). Through this capability AI provides a path
which connects human-generated instructions with machine-performed corrections that enhances
debugging workflow while lowering manual involvement (Lo, 2023).
5.4 Examples of AI-Powered Real-Time Correction Tools
Various software tools powered by AI technology now provide superior live programming
assistance to developers. Facebook's Sapienz software tool uses automation to create tests and find
bugs thus cutting down human debugging work (Lo, 2023). Real-time bug fixes and security
improvements which utilize deep learning models trained on extensive code repositories are
delivered through DeepCode's system (Benitez & Serrano, 2023). AI tools active in software
maintenance reflect the expanding use of AI that brings efficiency into debugging through
automated processes.

6. Challenges and Limitations
The main barrier to AI-driven self-healing software development arises from two fundamental
challenges which reduce its effectiveness. The implementation of AI-driven self-healing software
is constrained by four significant challenges which include inaccurate detection results, system
performance degradation and ethical risks and security threats. Self-healing systems require proper
solutions to resolve present challenges that affect their reliability and trustworthiness (Tihanyi et
al., 2023).

CINEFORUM
ISSN: 0009-7039
Vol. 63. No. 3, 2023

102

 © CINEFORUM

6.1 False Positives, Negatives, and Computational Overhead
AI-based bug detection software has two main limitations including misidentifying functional code
as faulty and not detecting real bugs correctly. The detection of too many false positives by
developers creates workflows difficulties whereas false negatives allow serious system
weaknesses to remain undetected (Sarda et al., 2023). Software errors together with insufficient
training data create these incorrect results (Monperrus, 2018). Debugging code with AI tools
demands considerable computational power because it slows down real-time code correction
functions. The processing requirements of deep learning models exceed the capabilities of low-
power devices along with embedded systems (Oyeniran et al., 2023). These problems can be
reduced through model optimization and edge computing deployments according to Esenogho et
al (2022).

6.2 Ethical and Security Concerns
The implementation of AI self-healing software creates ethical challenges because users lack
software clarity while developers face trust barriers and automated fixes show biased output
patterns (Lo, 2023). Many AI models operate as inscrutable systems which makes it difficult for
developers to comprehend or validate their outcomes according to Benitez & Serrano (2023).
Security risks stand as a leading obstacle among all other challenges. AI-based bug detection
systems face security threats from adversarial attacks which enable attackers to create system
weaknesses although the goal was to solve problems (Dhayanidhi, 2022). Training datasets
attacked by data poisoning will make AI models recommend insecure solutions according to
Alaghbari et al. (2022). XAI technology combined with security auditing methods work as
countermeasures to reduce the risks according to Pan et al. (2023).

7. Future Trends and Innovations
Various exciting developments guide the progressive advancement of AI-driven self-healing
software software. The field of self-healing software now features three main developments which
include DevOps integration and explainable AI debugging and AI-powered testing along with self-
healing AI capabilities in large-systems. The innovations work to improve reliability along with
efficiency and security of software while needing less human intervention during debugging and
maintenance stages (Tihanyi et al., 2023).

7.1 Integration with DevOps and Continuous Deployment Pipelines
Self-healing software today shows its major advancement through its amalgamation with DevOps
workflows and continuous deployment pipelines. Software development processes today require
quick cycles that produce numerous software updates which bring forth both errors and security
weaknesses. Self-healing AI systems embedded in CI/CD pipelines help detect errors during
deployment time which allows for quality maintenance and reduces operational interruptions
according to Oyeniran et al. (2023). The deployment of AI-powered tools like automated rollback

CINEFORUM
ISSN: 0009-7039
Vol. 63. No. 3, 2023

103

 © CINEFORUM

mechanisms as well as self-patching frameworks helps to stop faulty releases from reaching the
production environment. Microsoft and Google together with other companies employ AI-driven
DevOps solutions to replace manual operations through automation of testing debugging and
performance optimization activities (Tyagi, 2021).

7.2 Explainable AI for Better Debugging Insights
Software maintenance challenges stem from deep learning models having an unsolvable "black
box" issue that makes developers doubt and understand automated bug fixes. XAI has emerged to
solve this issue through explanations that reveal how AI works while providing clear insights about
debugging processes and improving interpretation of AI-driven decisions (Lo, 2023). Technical
explanations provided through XAI techniques such as decision trees and attention maps and
model-agnostic methods help developers understand which specific bugs received assessments
from AI models and what suggested fixes an AI model detected. XAI approaches help developers
develop trust and facilitate better human-machine debugging and maintenance activities (Pan et
al., 2023).

7.3 Advancements in AI-Driven Software Testing
Software testing of traditional nature depends on time-consuming manual scripting with
predefined rules resulting in tests which offer restricted scope. AI-driven software testing
transforms this method using machine learning and deep learning to develop automatic test case
production and execution and optimization (Roy & Tiwari, 2020). The modernization of AI testing
includes reinforcement learning-based test case generation that uses past failure feedback to
change its approach and AI-powered fuzz testing for vulnerability detection by making
unpredictable input suggestions (Stocco et al., 2020) and predictive analytics for failure forecasting
which enables early bug prevention (Sivaraman, 2020). The development of AI models leads
toward the expansion of test coverage with decreased human interaction to boost software
reliability throughout development stages and operational environments (Benitez & Serrano,
2023).

7.4 The Potential of Self-Healing AI in Large-Scale Systems
Self-healing AI systems bring maximum value to big distributed systems operating in areas like
cloud computing along with enterprise applications and IoT networks. Real-time AI-driven
maintenance systems play an essential role in minimizing downtime for distributed systems
because these systems face dynamic workloads and regular failures according to Johnphill et al.
(2023). Autonomous AI agents being developed now should enable self-healing software to detect
and resolve system problems during their early stages using predictive analytics and anomaly
detection methods (Hireche et al., 2022). Researchers are investigating AI-based self-healing
techniques for cyber-physical systems which include autonomous vehicles together with smart
grids and critical infrastructure (Adeniyi et al., 2023).

CINEFORUM
ISSN: 0009-7039
Vol. 63. No. 3, 2023

104

 © CINEFORUM

Conclusion
Self-healing software powered by AI presents significant progress in contemporary software
engineering as it enables automatic error identification alongside instant automatic corrections.
Combined AI techniques like machine learning anomaly detection alongside reinforcement
learning for predictive debugging and code analysis through NLP enhance system reliability as
they lower manual debugging requirements. The adoption of AI-driven debugging comes with
obstacles such as algorithmic false indications and processing system demands together with
security dangers from artificial intelligence systems. Future technical developments will target
better explainable artificial intelligence systems while they work to integrate AI naturally into
DevOps operations and develop self-healing capabilities for big distributed systems. The
resolution of current issues will enable AI-powered self-healing software to transform software
maintenance operations by creating applications that work independently with strong resilience
and security.

Reference

Tihanyi, N., Jain, R., Charalambous, Y., Ferrag, M. A., Sun, Y., & Cordeiro, L. C. (2023). A
new era in software security: Towards self-healing software via large language models
and formal verification. arXiv preprint arXiv:2305.14752.

Sarda, K., Namrud, Z., Rouf, R., Ahuja, H., Rasolroveicy, M., Litoiu, M., ... & Watts, I. (2023,
September). Adarma auto-detection and auto-remediation of microservice anomalies
by leveraging large language models. In Proceedings of the 33rd Annual International
Conference on Computer Science and Software Engineering (pp. 200-205).

Johnphill, O., Sadiq, A. S., Al-Obeidat, F., Al-Khateeb, H., Taheir, M. A., Kaiwartya, O., &
Ali, M. (2023). Self-healing in cyber–physical systems using machine learning: A
critical analysis of theories and tools. Future Internet, 15(7), 244.

Adeniyi, O., Sadiq, A. S., Pillai, P., Taheir, M. A., & Kaiwartya, O. (2023). Proactive self-
healing approaches in mobile edge computing: a systematic literature
review. Computers, 12(3), 63.

Todorov, P. G. (2022). The Application of Artificial Intelligence in Software
Engineering. Available at SSRN.

Monperrus, M. (2018). The living review on automated program repair (Doctoral dissertation,
HAL Archives Ouvertes).

Roy, R., & Tiwari, V. K. (2020). Smart Test Automation Framework Using AI. Journal of
Data Acquisition and Processing, 35(1), 116-136.

Sivaraman, H. (2020). Machine Learning for Software Quality and Reliability: Transforming
Software Engineering. Libertatem Media Private Limited.

Benitez, C. D., & Serrano, M. (2023). The Integration and Impact of Artificial Intelligence in
Software Engineering. Integration, 3(2).

CINEFORUM
ISSN: 0009-7039
Vol. 63. No. 3, 2023

105

 © CINEFORUM

Tyagi, A. (2021). Intelligent DevOps: Harnessing Artificial Intelligence to Revolutionize
CI/CD Pipelines and Optimize Software Delivery Lifecycles. Journal of Emerging
Technologies and Innovative Research, 8, 367-385.

Hireche, O., Benzaïd, C., & Taleb, T. (2022). Deep data plane programming and AI for zero-
trust self-driven networking in beyond 5G. Computer networks, 203, 108668.

Esenogho, E., Djouani, K., & Kurien, A. M. (2022). Integrating artificial intelligence Internet
of Things and 5G for next-generation smartgrid: A survey of trends challenges and
prospect. Ieee Access, 10, 4794-4831.

Lo, D. (2023, May). Trustworthy and synergistic artificial intelligence for software
engineering: Vision and roadmaps. In 2023 IEEE/ACM International Conference on
Software Engineering: Future of Software Engineering (ICSE-FoSE) (pp. 69-85).
IEEE.

Pan, L., Saxon, M., Xu, W., Nathani, D., Wang, X., & Wang, W. Y. (2023). Automatically
correcting large language models: Surveying the landscape of diverse self-correction
strategies. arXiv preprint arXiv:2308.03188.

Stocco, A., Weiss, M., Calzana, M., & Tonella, P. (2020, June). Misbehaviour prediction for
autonomous driving systems. In Proceedings of the ACM/IEEE 42nd international
conference on software engineering (pp. 359-371).

Dhayanidhi, G. (2022). Research on IoT threats & implementation of AI/ML to address
emerging cybersecurity issues in IoT with cloud computing.

Munk, P. (2016). A software fault-tolerance mechanism for mixed-critical real-time
applications on consumer-grade many-core processors.

Alaghbari, K. A., Saad, M. H. M., Hussain, A., & Alam, M. R. (2022). Complex event
processing for physical and cyber security in datacentres-recent progress, challenges
and recommendations. Journal of Cloud Computing, 11(1), 65.

Rajput, Pushpendra Kumar and Sikka, Geeta. ‘Exploration in Adaptiveness to Achieve
Automated Fault Recovery in Self-healing Software Systems: A Review’. 1 Jan. 2019:
329 – 341.

Jiang, M., Zhang, J., Raymer, D., & Strassner, J.C. (2007). A Modeling Framework for Self-
Healing Software Systems.

Montani S., Anglano C., (2008) Achieving Self-Healing in Service Delivery Software Systems
by Means of Case-Based Reasoning. Uploaded 2014.
https://www.researchgate.net/publication/220204996

