CINEFORUM ISSN: 0009-7039 Vol. 64. No. 2, 2024

Optimize Power of CMOS Multiplexer based NOR Gate using Sleepy Stack Technique

Er. PriyaVerma¹, Dr. MukeshTiwari ²

¹Department of Electronics & Communication Engineering, Sri Satya Sai University of Technology and Medical Sciences, Sehore (M.P.) E-mail: priyarajput22dec@gmail.com.

²Professor, School of Engineering Sri Satya Sai University of Technology & Medical Sciences, Sehore (M.P) E-mail:mukeshtiwari79@yahoo.co.in

Abstract: - In Deep Submicron CMOS digital circuits, analytical analysis of circuit performances, such as thepower dissipation and delay, is an important issue. The speed and power consumption trade off against eachother. In general, if the speed has top priority, the threshold voltage is reduced and the supply voltage isincreased; if the power dissipation has top priority, the threshold voltage is increased and the supply voltage isdecreased. In this paper, the analysis of CMOS multiplexerbased NOR gate using different technique. ToSurvey the various existing research works that are relevant to the proposed research work such as sleepy stack, dual stack, zigzag, forced stack etc. To analyze the power gating and multi-threshold CMOS circuits, inputvector control and data driven clock circuits that are relevant to the proposed sleepy stack technique. The CMOScircuitisimplementing DSCHanddrawthelayoutofMICROWIND software.

Keywords:CMOS,NORGate,SleepyStack,DSCH,MICROWIND

I. INTRODUCTION

The technological innovations show a very high growth rate, which develop highly sophisticated computing devices with the feature of processing them by the user from the place wherever they want. In addition, the users require very high speed operation and also expect the devices must be low-priced. These requirements havesome constraints regarding the size and power consumption of the devices. The portable and high-speed devices like cell phones, laptop requires lower power consumption circuits [1, 2]. The modern cell phones transmit thevoicealong with the data. They require complicated videoprocessing methods and speech recognitional gorithms. Hence, these processes like video compression and decompression, speech compression, accessing the multimedia files consume more power than the devices not having these features [3]. The size reduction of the circuit leads to the high-density package and hence the overriding problem occurs with the transistors. It is not a feasible solution to merely reduce the size for attaining low power consumption in electronic circuits. Therefore a highly efficient architecture is required to fabricate the modern electronic devices low powerconsumption. Very Large Scale Integration (VLSI) is a technology used to fabricate the devices with less size and less weight. Much architecture has been developed in VLSI technology to obtain less weight and high speeddevices with low power consumption [4,

Since the modern electronic devices like computers, laptops, mobile phones need to perform highly complexoperations; their processing speed and the battery lifetime must be high. When performing the multioperations at a time, the battery power drains and also the device gets heated. So the devices must be fabricated with the circuits requiring less power. Since the power dissipation of the circuit varies in proportion with the supplyvoltage, the supply voltage must be made low in order to reduce the power dissipation problem. In contrary, while decreasing the supply voltage, the speed of the logic circuit decreases. Hence, to overcome this adverseprocess, the threshold voltage is made low [6]. But this process results in more leakage or standby powerdissipation because of the sub threshold current flow through the MOSFETs. Even the presence of very lowthresholdswitchescancausethestandbyleakagepower. As are sult, one needs to compute the power dissipation in a circuit by considering not only the dynamic power, also the standby power dissipation. Manymethods have been proposed to lower the leakage power in low threshold devices by making changes at thecircuitlevel andprocesslevel[7, 8].

II. LEAKAGEPOWER

Total leakage current of n-MOSFET in off-state is given as the summation of various leakage currents such asSubthresholdleakagecurrent(ISTH),band-to-bandtunnelingleakagecurrent(IBBT),gate-induceddrainleakage current (IGID), gate-to bulk oxide tunneling leakage current (IGB), drain-to-oxide tunneling leakagecurrent (IDG).IBBT and IGID has two components. They are drain-to-bulk and source-to-bulk reverse-bias p-njunctionleakage currents.

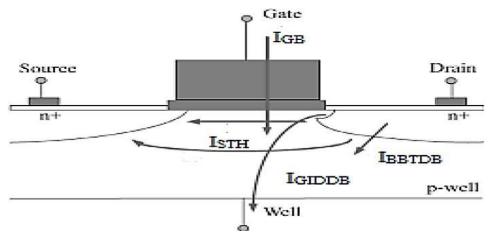


Figure1:Standbyleakagecurrent of MOSFET

The MOSFET is said to be in off-state when it is working below the threshold voltage, (gate-to-source voltage,(VGS=0). Still a small amount of current passes through the device in off-state which causes significant powerdissipation in the device. So it is very essential to select the value for sub-threshold leakage current (ISTH).ISTH is the weak reverse conduction current and controlled by the diffusion current passing across drain and source when VGS is less than Vth [11]. The electric field intensity across the depletion region becomes high dueto the raise of IBBT caused by heavy doping of Source/drain and substrate region. If this electric field becomes greater than 106 V/cm, the voltage drop across the junction is greater than the silicon band- gap and hence theenormousamountofIBBTpassesacrosssubstratejunctions[12]. Assaidintheabovesection, IGID is due to the IBBT in the high field depletion region in the gate-drain overlap region. The depletion region is formed by biasing drain at supply voltage (Vdd) and gate at 0V. Similar to IBBT large amount of IGID passes across drain-to-substrate junctions because of band rotation, when the high electric field is created in the narrow depletionregiondue toreverse biasbetweenchannelanddrain.

III. PROPOSEDMETHODOLOGY

However, separated transistors shows more delay and restrict the usefulness of the technique. The sleepy stackmethod conjoins the sleep and stack techniques. Similar to the stack technique, the sleepy stack splits the normaltransistors into two half sized transistors. Afterwards sleep transistors are inserted in parallel with any of theseparated transistors. In sleep state, sleep transistors are switched off and stacked transistors suppress leakagecurrent in saving mode. Each sleep transistor cuts down the resistance of the path, and therefore the delay isreduced during active state. However the efficiency attained with this approach is only 30%. However, areapenalty is a significant matter for this approach since every transistor is replaced by three transistors and sinceadditionalwiresare added for SandS', which are sleep signals.

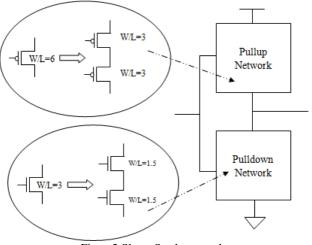


Figure2:SleepyStackapproach

In sleep mode, both the sleep transistors are kept off and one of the transistors in across with the sleep transistorsis connected with the suitable power rail. In the sleep approach, zigzag approach, sleepy stack approach andleakage feedback approach, dual V_{th}method can be employed to get greater leakage power reduction. Highvalue of threshold voltage causes less leakage and less performance, hence high threshold voltage is given to theleakage reduction transistors only, which are sleep transistors, and low threshold voltage is given to the other transistors to preserve logic performance. The delay is reduced in this technique and the drawback is therequirementoflargespace.

IV. SIMULATIONRESULTS

The proposed methodology is a sleepy keeper approach to reduce for power consumption. Here, the powerconsumption is observed by employing the DSCH and MICROWIND tool.

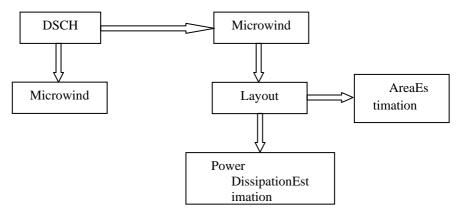


Figure3:Blockdiagram

 $The Figure 4\ inferences the digital schematic diagram for basic NOR gate using microwind tool.$

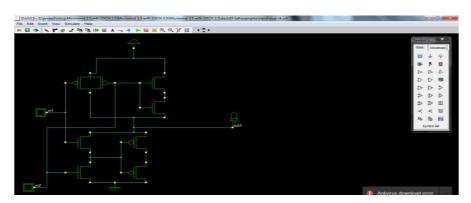


Figure4: BasicNORgate

 $The Figure 5\ inferences the digital schematic diagram for stack approach NOR gate using microwind tool.$

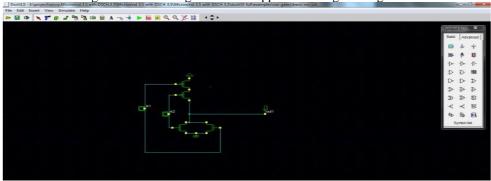


Figure5: NORgateusingstackapproach

 $The Figure 6\ inferences the power\ utilized by basic NOR gate using microwind tool.$

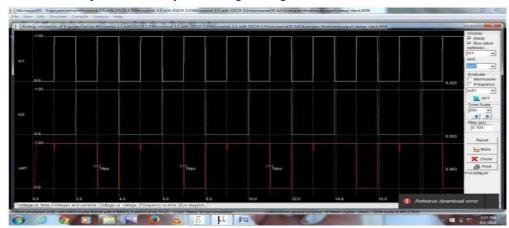


Figure6:PowerutilizedbybasicNORgate

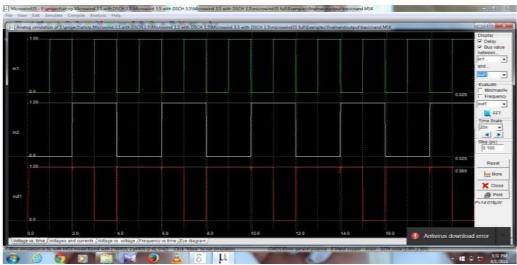
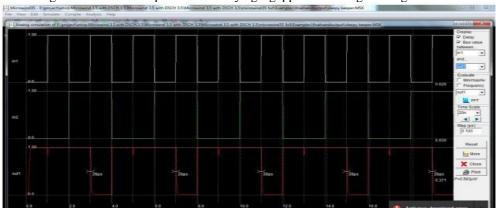



Figure 7: Powerutilized by dual stack approach NAND gate

 $The Figure 8\ inferences the power utilized by zigzag approach NOR\ gateus in gmicrowind tool.$

 $Figure 8: Power\ utilized by zigzag approach\ NOR gate$

The Figure 9 inferences the power utilized by sleepy stack approach NOR gate using microwind tool.

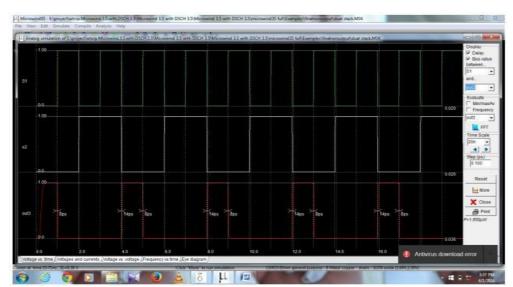


Figure9:Power utilizedbysleepystackNORgate

Table 1 represents the NOR gate using different methods. The basic NOR gate provide a power of 1437 nW, Zigzag method provide a power 1374 nW, Stack method provide a power 1397 nW, Dual Stack method provide a power 1250 nW and Sleepy Stack method provide a power 706 nWFig. 10 shows the graphical representation of the provide approximation of the provide aphecomparisonmethod.

rable i. Comparisonoi	powerumzanonomokgateusing	variousineulous

Method	Power(uW)	
	PreviousSaiSrinivas	ProposedMethod
	Chandraetal.[1]	
BasicNORGate	1892 nW	1437nW
ZigzagMethod	1782 nW	1374nW
StackMethod	1626 nW	1397nW
DualStackMethod	1472 nW	1250nW
SleepyStackMethod	902.3nW	706nW

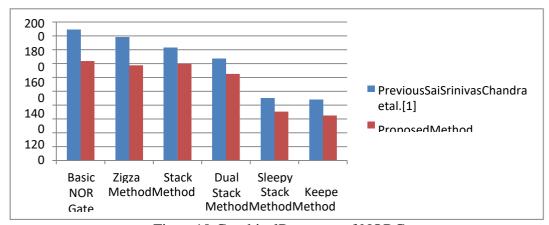


Figure 10: Graphical Represent of NORGate

CONCLUSION

Due to the stacking effect, the sub threshold leakage over a logic gate be subject to on the applied input vector. This tends to create the total leakage current of a circuit in need of on the states of the primary inputs. The moststraightforward way to determine a low leakage input vector is to compute every combination of primary inputs. For a circuit with primary inputs, there are combinations for input states. Owing to the exponential difficulty with respect to the number of primary inputs, like exhaustive method is limited to circuits with a small number of the contraction ofprimary inputs. Meant for large circuits, a random search-based procedure can be used to observe the bestinput arrangements. This method includes producing a numerous primary inputs, appraising the leakage of eachinput, and possession track of the best vector providing the minimal leakage current.

VI. LIST OF ABBREVIATION

S.No	Abbreviation	Definition	
1	MOSFET	Metal Oxide Semiconductor Field-Effect Transistor	
2	SCE	Short Channel Effect	
3	CMOS	Complementary Metal Oxide Semiconductor	
4	NAND	NOT AND	
5	DSCH	Digital Schematic Circuit Designing software	
6	MOS	Metal Oxide Semiconductor	
7	ITRS	International Technology Roadmap for Semiconductors	
	SPD	Static power dissipation	
9	DPD	Dynamic power dissipation	
10	ScPD	Short circuit Power Dissipation	
11	PMOS	p-channel Metal Oxide Semiconductor	
12	NMOS	n-channel Metal Oxide Semiconductor	

DECLARATIONS

1. Funding Declaration

I, Priya Verma, first author of the research paper, hereby declare that I did not receive support from any organization for the submitted work. No funding was received to assist with the preparation of this.

2. Data Availability Declaration

I, hereby declare that this research paper is a part of dissertation of my Ph.D. So complete data can be accessed after completion of it.

3. Competing Interest Declaration

I, hereby declare that I have no competing interest that could appear to influence the work reported in this paper.

4. Consent to publish Declaration

"Not Applicable"

5. Author's Contribution

Study conception and design: Priya Verma; Data collection: Dr. Mukesh Tiwari; Analysis and interpretation of results: Dr.Mukesh Tiwari, Er. Priya Verma; Draft manuscript preparation: Er. Priya Verma. Both authors reviewed the results and approved the final version of the manuscript.

First Author: Priya Verma

ACKNOWLEDGEMENT

CINEFORUM

ISSN: 0009-7039 Vol. 64. No. 2, 2024

We would like to thank Dr. Lalit Mohan Choudhary, Assistant Professor, SSSUTMS, Sehore for provding us with his guidance and support during

REFERENCES

- Sai Srinivas Chandra, R. Jagadeesh Kannan, B. Saravana Balaji, Sreehari Veeramachaneni & Sk. NoorMahammad, "Efficient design and analysis of secure CMOS logic through logic encryption", ScientificReport(Scopus), Nature, 2023.
- A. Gupta, M. K. Singh, R. Jaiswal, D. Goel and K. Singh, "Standard Cell Library Design of 2:1 [2] MuxUsing 45nm Technology", International Conference on Next Generation Electronics (NEleX), Vellore, India, pp. 1-5,2023.
- R. Singh and A. Kumar, "Design and analysis of allow powerhigh speedfull adder using 2×1 multiplexer," [3] IEEE North Karnataka Subsection Flagship International Conference (NKCon), Vijaypur, India, pp. 1-
- M. Sivasakthi and P. Radhika, "A High-Speed MCML Logic Gate and Multiplexer Design in 45 [4] nmCMOS Technology," Fourth International Conference on Emerging Research in Electronics, ComputerScienceandTechnology(ICERECT), Mandya,India, pp. 01-05,2022.
- [5] K. Rajashekhar, Kiladibaboji and K. Mohana Leela, "Leakage Power, Current and Delay Analysis ofStackONOFICBasedCMOSCircuits",InternationalConferenceonAdvancesinComputing,Communicat ionandAppliedInformatics(ACCAI), IEEE 2022.
- [6] D. R. Florance and B. Prabhakar, "Design of FinFET and GnrFET Based Full Adder Cell UsingMultiplexer Selection Logic", 2022 4th International Conference on Smart Systems and InventiveTechnology(ICSSIT),pp.741-747,2022.
- H. You J. Yuan Z. Yu and S. Qiao "Low-Power Retentive True Single-Phase-Clocked Flip-Flop [7] WithRedundant-Precharge-Free Operation" IEEE Transactionson Very Large Scale Integration (VLSI)Systemsvol. 29no. 5pp.1022-1032May2021.
- Ritesh Ray Chaudhuri William Simps on Michael Hurt and John Lee "Dashboard for CMOS (Complementary more for the CMOS) and the property of the property of the CMOS (Complementary more for the CMOS) and the CMOS (CMOS) are the CMOS (CMOS) and the CMOS (CMOS) and the CMOS (CMOS) are the CMOS (CMOS) are the CMOS (CMOS) and the CMOS (CMOS) are the CMOS (CMOS) and the CMOS (CMOS) are the CMOS (CMOS) are the CMOS (CMOS) and the CMOS (CMOS) are the CMOS (CMOS) areetaloxidesemiconductor)ParametricYieldandPerfor.MonitoringinSemiconductor (SC) Manufacturing" 2021 32nd Annual SEMI Advanced S.C Manufacturing Conf.(ASMC)2021.
- Laxmi Kumre, Bhavana P Shrivastava and Neeraj Rai, "Comparative Analysis of CMOS Inverter ForLow Leakage Power", International Journal Of Scientific & Technology Research Volume 8, Issue 09,September2019.
- Xiaoke Tang Xu Hu Yapeng Zhang Yi Hu and Xi Feng, "An Analysis of Power Dissipation Analysisand Power Dissipation optimization Methods in Digital Chip Layout Design", IEEE 19th Interna. Conf.onComm. Tech. (ICCT) 2019.
- [11] S. Thayaparan and G.W.G.K.N. Udayanga "Minimum leakage vector with sparse power gating acombinational approach for standby leakage power reduction in CMOS (Complementary metal oxidesemiconductor)circuits"2019IEEE Interna. Circ. and Sys. Sympo.(ICSyS)2019.
- R. Rao R. Katreepalli and E. R. Thuraka, "Design of general purpose microprocessor with an improvedperformanceselfsleepcircuit", International Conf. on Smart Sysand Inventive Tech. (ICSSIT) 2018.
- [13] S. Chaudhary and R. Lorenzo "Low leakage and minimum energy consum. in CMOS (Complementarymetaloxidesemiconductor)logiccir"Interna.Conf.onElectro.DesignComp.Netw.& Automated Verifi. (EDCAV)Jan. 2015.
- [14] A.NunezandB.S.Deepaksubramanyan"AnalysisofsubthresholdleakagereductioninCMOS(Complementa rymetaloxidesemiconductor)digitalcirc"Proc.13thNASAVLSISymp. June2007.
- Abdollahi, A, Fallah, F & Pedram, M., "Leakage current reduction in CMOS VLSI circuits by inputvector control", IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 12, no. 2, pp.140-154,2004.
- Anis, M, Mahmoud, M, Elmasry, M & Areibi, S, "Dynamic and leakage power reduction in MTCMOScircuits using an automated efficient gate clustering technique", in Proceedings of the 39th AnnualDesign AutomationConference,ACM,pp. 480-485,2002.

- Behradfar, A, Zeinolabedinzadeh, S & HajSadeghi, K, "A clock boosting scheme for low voltagecircuits",15thIEEEInternationalConferenceonElectronics,Circuitsand Systems,pp.21-24,2008.
- Brandt, J, Schneider, K, Ahuja, S & Shukla, SK, "The model checking view to clock Stating and perand [18] isolation", Proceedings of the 10th International Conference on Application of Concurrency toSystemDesign(ACSD), IEEE, pp.181-1,2010.
- Keskin, M, "A low-voltage CMOS switch with a novel clock boosting scheme', IEEE Transactions onCircuitsandSystemsII:ExpressBriefs,vol. 52, no.4,pp.185-188, 2005.
- Kim, KK & Kim, YB, "A novel adaptive design methodology for minimum leakage power consideringPVT variations on nanoscale VLSI systems", IEEE Transactions on Very Large Scale Integration(VLSI) systems,vol. 17, no. 4, pp.517-528,2009.
- Koppanalil, J, Yeung, G, Driscoll, DO, Householder, S & Hawkins, C, "A 1.6 GHz dual-core ARMCortex A9 implementation on a low power high-K metal gate 32nm process", Proceedings of theInternationalSymposiumon VLSIDesign,AutomationandTest(VLSIDAT),IEEE,pp.1-4,2011.
- Narendra, S, De, V, Antoniadis, D, Chandrakasan, A & Borkar, S, "Scaling of stack effect and itsapplication for leakage reduction", in Proceedings of theInternational Symposium on Low PowerElectronicsandDesignACM,pp. 195-200, 2001.
- Neau, C & Roy, K, "Optimal body bias selection for leakage improvement and process compensationover different technology generations", in Proceedings of the International Symposium on Low PowerElectronicsandDesignACM,pp. 116-121, 2003.

Author's Biography

Er.PriyaVerma was born in Bhopal, India, in 1987. She received the Bachelor of Engineering Degree in Electronic and Communication Engineering from R.G.P.V. University, Bhopal in 2010 and her M.Tech degree from the same University in 2014 in VLSI Design and persuing her Ph.D. degree in Electronics & Communication Engineering from SSSUTMS, Sehore.She had been Faculty of engineering students in the college BIET, Jhansi two years and Bundelkhand University for two years. Her current research interest includes multiplexers, logic gates, VLSI design. she can be contacted at email id: priyarajput22dec@gmail.com.

Dr. Mukesh Tiwari is Professor at School of Engineering Sri Satya Sai University of & Medical Sciences, Sehore (M.P). He received the Bachelor of Engineering Degree in Electronic and Communication Engineering in 2001 and his M.Tech degree in 2009 in Digital Communication & his Ph.D. degree in Electronics & Communication Engineering in 2018 from R.G.P.V. Bhopal. His Areas of Research Interest are Image Processing, Wireless Communication Systems and Secure Transmissions. He can be contacted at email id: mukeshtiwari_79@yahoo.co.in.

